KM LNG Export Terminal
Belt Conveyor
Kitimat, BC

OPERATION AND MAINTENANCE MANUAL

KM LNG Export Terminal Belt Conveyor Kitimat, BC

November 2013

TABLE of CONTENTS

- 1. Safety
- 2. Installation
 - 2.1. Storage
 - 2.2. Civil Requirements
 - 2.3. Lifting Guidelines
 - 2.4. Belt Conveyor Assembly
- 3. Start-up & Operating Procedures
 - 3.1. Prior to Initial Start-up
 - 3.2. Initial Start-up
 - 3.3. General Operation
- 4. Shutdown Procedures
 - 4.1. Recommended Short-Term Shutdown Procedures
 - 4.2. Recommended Long-Term Shutdown Procedures
- 5. Maintenance Instructions
 - 5.1. Lubrication
 - 5.2. Motion Detector Check
 - 5.3. Troubleshooting Guide
 - 5.3.1. General
 - 5.3.2. Belting
 - 5.3.3. Bearings
 - 5.3.4. Gear Reducer
 - 5.3.5. Drive Motor
 - 5.3.6. Motion Detector
 - 5.4. Schedule for Preventative Maintenance

KM LNG Export Terminal Belt Conveyor Kitimat. BC

November 2013

6. Data Sheets

- 6.1. SEW Gear Reducer
 - 6.1.1. Specifications
 - 6.1.2. Dimension Sheets
 - 6.1.3. Spare Parts Lists
- 6.2. Luff Components
 - 6.2.1. 48" Trough Idler
 - 6.2.2. 48" Impact Idler
 - 6.2.3. 48" Carrying Training Idler
 - 6.2.4. 48" Return Idler
 - 6.2.5. Cover
 - 6.2.6. Drive Pulley
 - 6.2.7. Tail Pulley
 - 6.2.8. Take-up Frame
- 6.3. Asgco Components
 - 6.3.1. 48" Flat Return Training Idler
 - 6.3.2. 48" V-Plow
 - 6.3.3. Primary Scraper
 - 6.3.4. Secondary Scraper
- 6.4. Crouse Hinds Pull Switches
- 6.5. Conveyor Components Co. Alignment Switch
- 6.6. 4B Speed Switch
- 6.7. Ultraline Electric Motor
- 6.8. Goodyear Belt

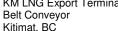
7. Instruction Guides

- 7.1. SEW Gear Unit Operating Instructions
- 7.2. SKF Pillow Block Maintenance Manual
- 7.3. Goodyear Conveyor Belt Maintenance Manual
- 7.4. Asgco RazorBack Installation Manual
- 7.5. Asgco Skalper IV Installation Manual
- 7.6. Asgco Tru-Trainer Installation Guide
- 7.7. Asgco V-Plow Manual
- 7.8. CCC #TA Belt Alignment Installation Manual
- 7.9. 4B M800 Elite Speed Switch Manual
- 7.10. Ultraline Motor Maintenance Manual

8. Recommended Spare Parts List

9. Drawings

KM LNG Export Terminal Belt Conveyor Kitimat, BC



1. SAFETY

The following instructions are issued as recommendations only and are not intended to supersede any ruling authority or plant procedure that may affect this work. In all cases, operating and maintenance personnel should use their best judgment and common sense.

- Lockout equipment before beginning any work on conveyor.
- Prior to working on conveyor, personnel should read manual.
- Work should only be performed by those suitably trained in the installation & operation of belt conveyors.
- When loading, unloading, or otherwise handling equipment, check for surrounding obstructions, fittings and powerlines.
- The moving parts of a conveyor may catch loose clothing, jewelry, long hair, etc. Dress appropriately.
- Never ride on conveyor.
- Check that all personnel are clear before starting conveyor.
- The conveyor must not be operated without all of the guards and control accessories in place.

KM LNG Export Terminal Kitimat, BC

November 2013

2. **INSTALLATION**

The following installation procedures are designed and prepared to assist with the understanding of the installation of the belt conveyor. This document should be read in conjunction with the drawings.

Equipment installation should only be undertaken by persons familiar with heavy equipment installations, such as certified Millwrights. All rigging and support structures should be so arranged as to ensure the Safety of all persons involved in the installation of the equipment.

Under no circumstances should equipment start-up be made until all equipment is correctly installed, with all required supports in place and all anchor bolts secure. Failure to do so may cause injury.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

2.1 Storage

- i. Check all materials and equipment upon delivery. Inspect for damages or missing components. Unless Megatech is notified within seven days of receipt of the equipment, Megatech will not be held responsible for any damaged or missing components.
- ii. All electrical equipment, motors, and control devices shall be covered and stored in a clean, dry, heated area.
- iii. Tarpaulin heavy-duty polyethylene sheets shall cover all equipment stored outdoors, or equipment should be stored in a warehouse. If equipment is to be stored outdoors with protective coverings, it shall be mounted on a suitable support, clear of any vegetation or foliage.
- iv. All machined surfaces shall be greased and individually wrapped prior to being covered.

2.2 Civil Requirements

- i. Review the contract and shop drawings for the belt conveyor and provide the necessary bases, foundations, miscellaneous steel work and civil works required for the equipment. Allow sufficient access to the civil works to permit installation of the equipment.
- ii. Verify that all supports and auxiliary steelwork that are not provided by Megatech are available as required to install the belt conveyor and associated equipment.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

November 2013

2.3 Lifting Guidelines

- i. Lifting should always take place with approved lift slings, tackles, and/or other lifting materials.
- ii. Use designated lifting lugs if available. For small items without lugs, sling appropriately.
- iii. Weights of components can be found on the drawings.

2.4 Belt Conveyor Assembly

The belt conveyor will be shipped factory assembled to the greatest extent possible. Items not factory assembled shall be installed per drawings and standard conveyor installation procedures. Only trained personnel with extensive knowledge of belt conveyors shall be used.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

November 2013

3. START-UP & OPERATING PROCEDURES

Under no circumstances should equipment start-up be made until all equipment is correctly installed, with all required supports in place and all anchor bolts secure. Failure to do so may cause injury.

3.1 Prior to Initial Start-up

- i. Ensure gearbox and bearings contain proper quantity of lubricant.
- ii. Check proper rotation of motor.
- iii. Check proper installation of idlers.
- iv. Check proper installation of belt scrapers.
- v. Check proper adjustment of rubber skirting at loading point.
- vi. Check that all fasteners are secure.
- vii. Remove all construction materials.
- viii. Secure all guards.
- ix. Check function of safety devices.

KM LNG Export Terminal Belt Conveyor Kitimat. BC

3.2 Initial Start-up

- i. Run conveyor at slow speed. Check all equipment to determine proper adjustment and function. Increase speed until normal operating parameters are reached.
- ii. Check that motion detector is operating correctly. To test motion detector system, run the conveyor and create a simulated motion detector failure. This is done by either removing the motion detector from the shaft or by disconnecting the lead wires at the nearest junction box. This should cause a shutdown of the conveyor and all upstream equipment (i.e. all equipment feeding the conveyor). If this test procedure fails, make adjustment and repeat the test until system operates correctly.
- iii. Once proper belt tracking has been achieved, slowly introduce material until full capacity is reached

3.3 General Operation

- i. When system is started, warning horn will sound. Conveyor is first equipment to start.
- ii. Emergency stoppage of the conveyor will stop all upstream equipment as well.
- iii. Under normal shutdown conditions, equipment will stop in sequence with conveyor being the last. Time delay of shutdown is adjustable.
- iv. Motion detectors on conveyor detect a loss of motion. If loss of motion is detected, an alarm is issued, the conveyor will stop, and upstream equipment will shut down.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

November 2013

4. SHUTDOWN PROCEDURES

4.1 Recommended Short-Term Shutdown Procedures

- Short-term shut-down includes running the conveyor long enough to allow the conveyed materials to discharge from the conveyor.
- ii. Once material is clear of the conveyor, initiate system shutdown, per the Facilities Standard Operating Procedure.

4.2 Recommended Long-Term Shutdown Procedures

- i. Run conveyor until empty.
- ii. Inspect the conveyor for any signs of unusual wear.
- iii. Check lubrication level of the gear reducer. Lubricate all bearings.
- iv. Once a month, operate the conveyor for a short period of time.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

5. MAINTENANCE INSTRUCTIONS

Safety Notice

Under no circumstances should personnel perform any work on conveyor while power is available to the electric motor drive. Before performing any work on the conveyor, the starter shall be in the 'OFF' position with approved safety tags and padlocks in place. In addition, the local disconnects should be opened. After this has been accomplished, it should be verified that the starter that has been disabled is the correct one for the equipment.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

5.1 Lubrication

Operations management shall setup a regular lubrication schedule. Refer to manufacturer's literature for recommendations and procedures.

5.2 Motion Detector Check

The objective of this test is to determine whether the motion detector sensor and relay unit are operating properly.

The principle of operation of the equipment is as follows:

- As the sensor rotates an electric current (or pulse) is generated.
- A regular series of pulses (from a properly operating conveyor) causes the relay to give a permissive signal to the drive motor controller.
- An irregular series of pulses (or none at all) causes the relay (after a preset time delay) to give a failure signal to the drive motor controller. This results in a conveyor shut down.

The motion detector system is tested as follows:

- i. Run the conveyor.
- ii. Locate motion sensor.
- iii. Remove sensor from shaft. The signal will be lost which simulates a stopped conveyor. Alternatively, disconnect lead wires.
- iv. The conveyor should stop operating (along with upstream equipment).
- v. If conveyor does not stop, shut down conveyor. Check motion sensor connections and repair as required.
- vi. Test again. If conveyor still fails to stop, replace sensor.
- vii. Record date of test.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

5.3 TROUBLESHOOTING GUIDE

5.3.1 General

<u>SYMPTOM</u>	POSSIBLE CAUSE
Conveyor will not start.	No power to motor.
	No permission from the downstream equipment or control system.
Conveyor has not started.	Check for possible jamming.
	No permission from the downstream equipment or control system.
	Check if the disconnect switch is off.
	Check fuses or circuit breakers.
Vibrations.	Check belting.
	Check that idlers and structure are secure.
	Check that gear reducer is secure.
Full capacity is not achieved.	Check feed to conveyor.
	Check discharge chutes for plugging.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

5.3.2 Belting

SYMPTOM	POSSIBLE CAUSE	CORRECTION
Conveyor belt runs to one side at a particular point on the conveyor.	One or more idlers not at right angles to longitudinal centerline of belt.	Advance the end of idler to which the belt has shifted in the direction of belt travel.
	Conveyor frame not lined up properly.	Stretch line along edge to determine how much out of line and correct.
	Sticking Idlers.	Replace or free idler.
	Structure not level and belt tends to shift to low side.	Level structure.
	Build up of material on idlers.	Adjust belt scrapers.
One section of belting runs	Splices not square.	Re-splice.
off to one side all along the conveyor.	Crooked belt.	If new, may correct itself when broken in. Otherwise, replace with new section.
Conveyor belt runs to one side for some distance along conveyor.	Improper loading of belt.	Make changes in loading area so that material is centered properly.
Belt has erratic action, following no particular pattern.	Belt too stiff.	May be due to newness. If so, allow proper break-in time.
		Add training idlers.
Belt running off at head pulley.	Head pulley or troughing idlers approaching head pulley out of alignment.	Check alignment of pulley and adjacent troughing idlers.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

<u>SYMPTOM</u>	POSSIBLE CAUSE	CORRECTION	
Belt running off at tail pulley.	Build up of material on return idlers.	Remove material. Provide better maintenance.	
	Return rollers out of line.	Adjust at right angle to frame.	
	Unequal loading.	Adjust loading chute to properly center the load.	
Excessive wear on underside of belt.	- 1-13		
	Sticking troughing idlers.	Replace or free.	
	Material ground between pulley and belt.	Adjust scrapers.	
Excessive wear on carrying side of belt.	Dirty, frozen, or misaligned return idlers.	Adjust scrapers. Clean, repair, align return idlers.	
	Excessive sag between troughing idlers causing load to move and shift on belt as it passes over idlers.	Increase belt tension if too low. Reduce idler spacing.	
	Abrasive skirtboards.	Check material.	
	Poor loading.	Check loading.	

KM LNG Export Terminal Belt Conveyor Kitimat, BC

SYMPTOM

Belt requires too much tension resulting in excessive stretch in belt.

POSSIBLE CAUSE

Improper maintenance of troughing and return idlers.

CORRECTION

Reduce friction by replacing frozen or worn-out idlers.

Provide better maintenance.

Clean pulley lagging.

Increase speed, if possible.

Reduce tonnage at slower speed.

Tighten screw take-up just enough to keep belt from slipping.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

5.3.3 Bearings

<u>SYMPTOM</u>	POSSIBLE CAUSE
Leaking.	Check seals.
Noisy.	Check lubricant.
Hot.	Check lubricant.
Housing loose.	Check housing bolts and housing fastening bolts.
Shaft is difficult to turn.	Check grease condition and level.
	Check bearing clearances.

KM LNG Export Terminal Belt Conveyor Kitimat, BC

5.3.4 Gear Reducer

<u>SYMPTOM</u>	POSSIBLE CAUSE
Leaking.	Check seals.
Hot.	Check oil level and condition of oil.
Noisy.	Check gearing for excessive wear and oil levels.
Excessive vibrations.	Check connections.
Oil foaming.	Check oil level and condition of the oil (replace oil).

KM LNG Export Terminal Belt Conveyor Kitimat, BC

5.3.5 Drive Motor

<u>SYMPTOM</u>	POSSIBLE CAUSE
Hot.	Check ventilation ports.
	Check thermistors on motor winding for faulty winding or power input.
	Compare actual motor current draw with normal.
Noisy.	Check bearings.
Will not start.	Check power characteristics.
	Check downstream equipment permissive signals.
	Check safety stop switches.
	Check permissive contacts (ie. motion detector).

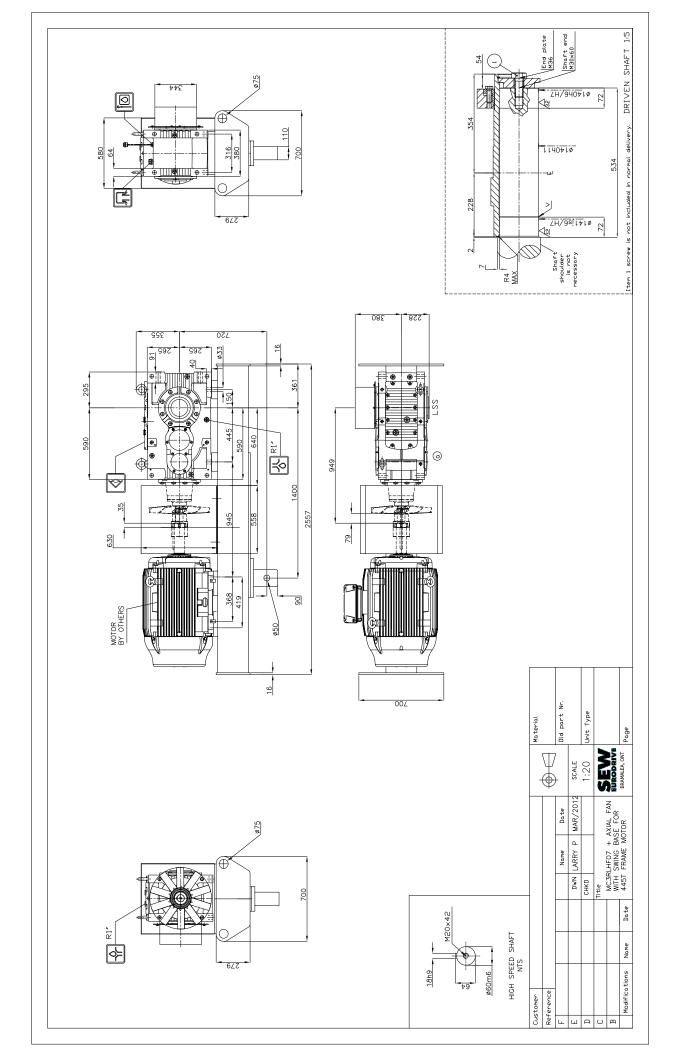
KM LNG Export Terminal Belt Conveyor Kitimat, BC

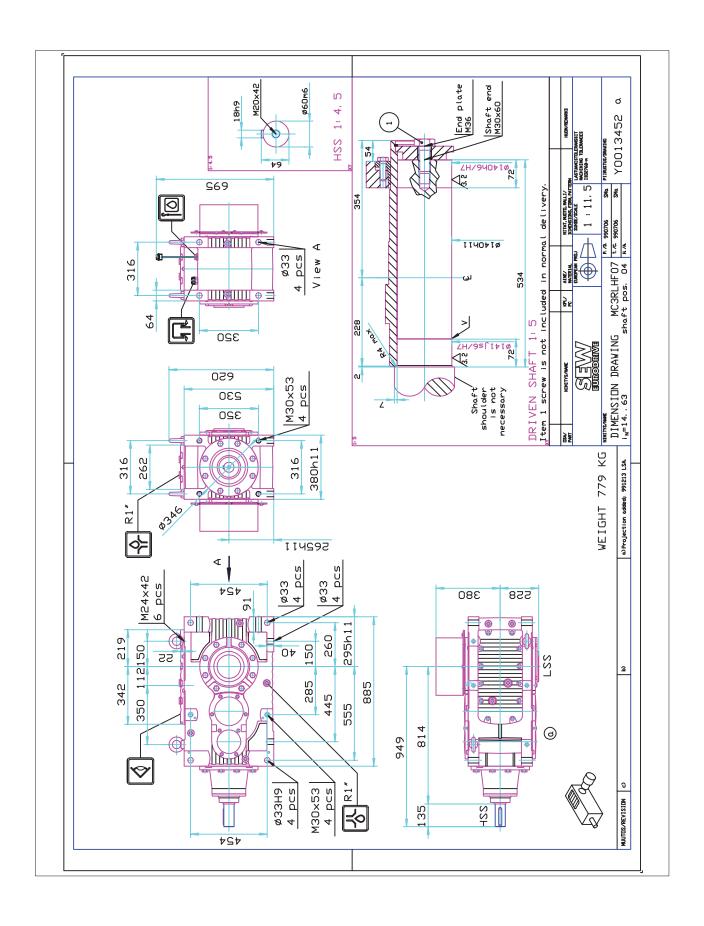
5.3.6 Motion Detector

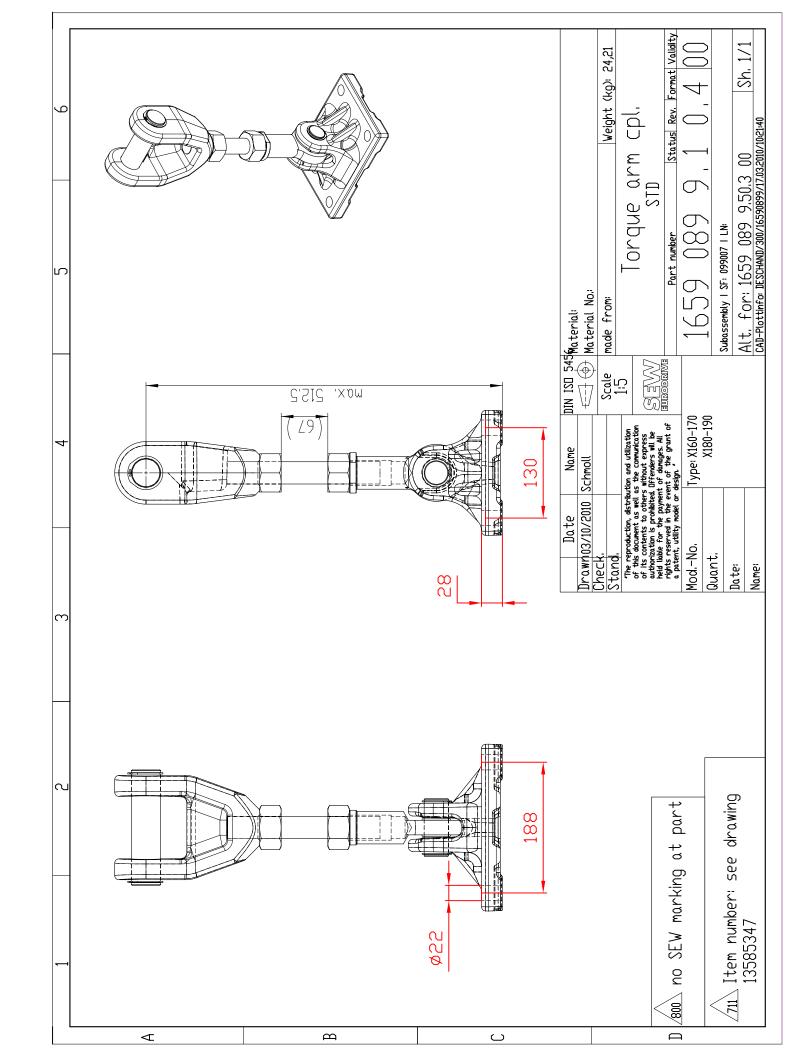
<u>SYMPTOM</u>	POSSIBLE CAUSE	REMEDY	
Conveyor not moving material.	Control equipment fault.	Resolve faults in control equipment.	
	Conveyor jammed.	Check feed and discharge chutes.	
	Belt broken.	Check for cause of failure.	
		Repair belt.	
	Motion detector fault.	Adjust or replace motion detector components.	
Conveyor not starting.	Faulty starting relay	Check/replace starting relay.	
Excessive time interval to stop.	Improper control setting.	Check switch setup.	

KM LNG Export Terminal Belt Conveyor Kitimat, BC

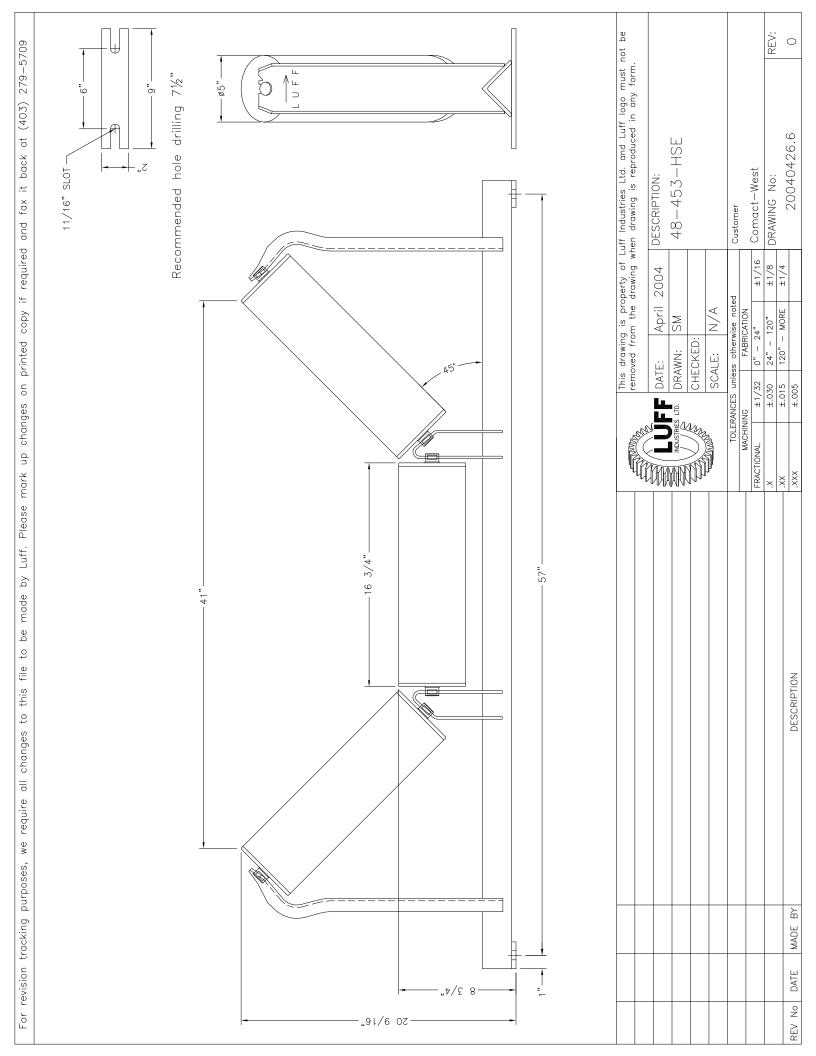
November 2013

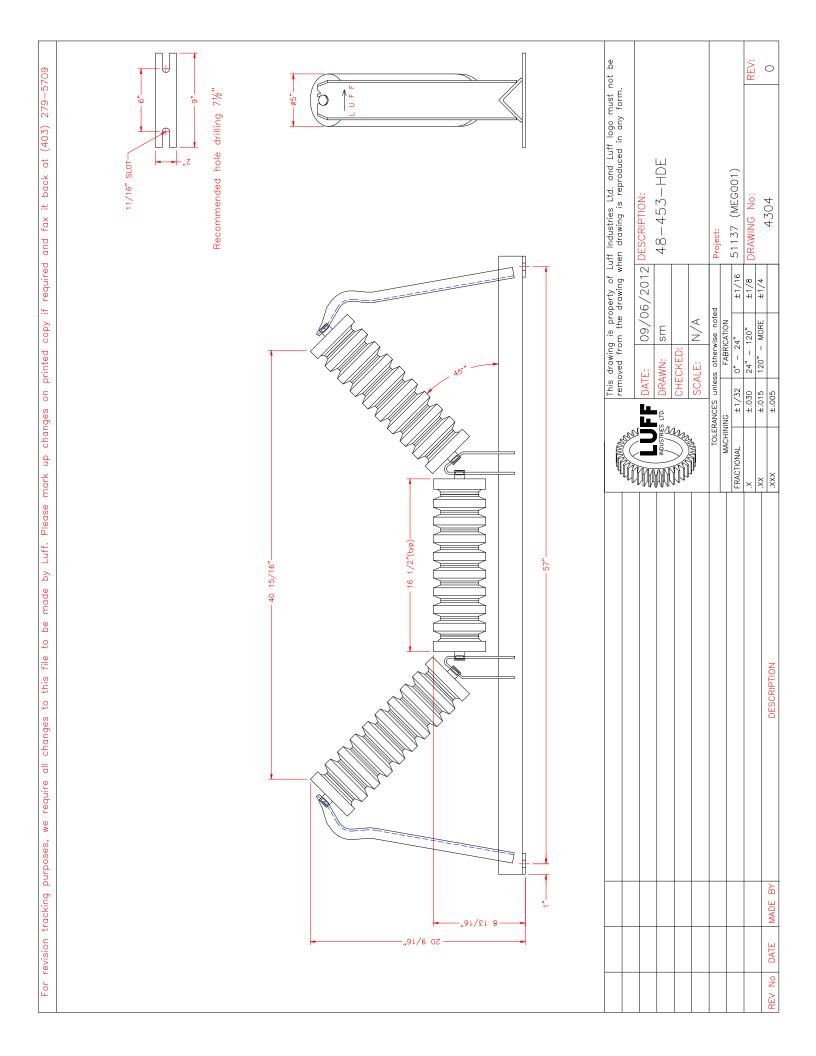

5.4 Schedule for Preventative Maintenance

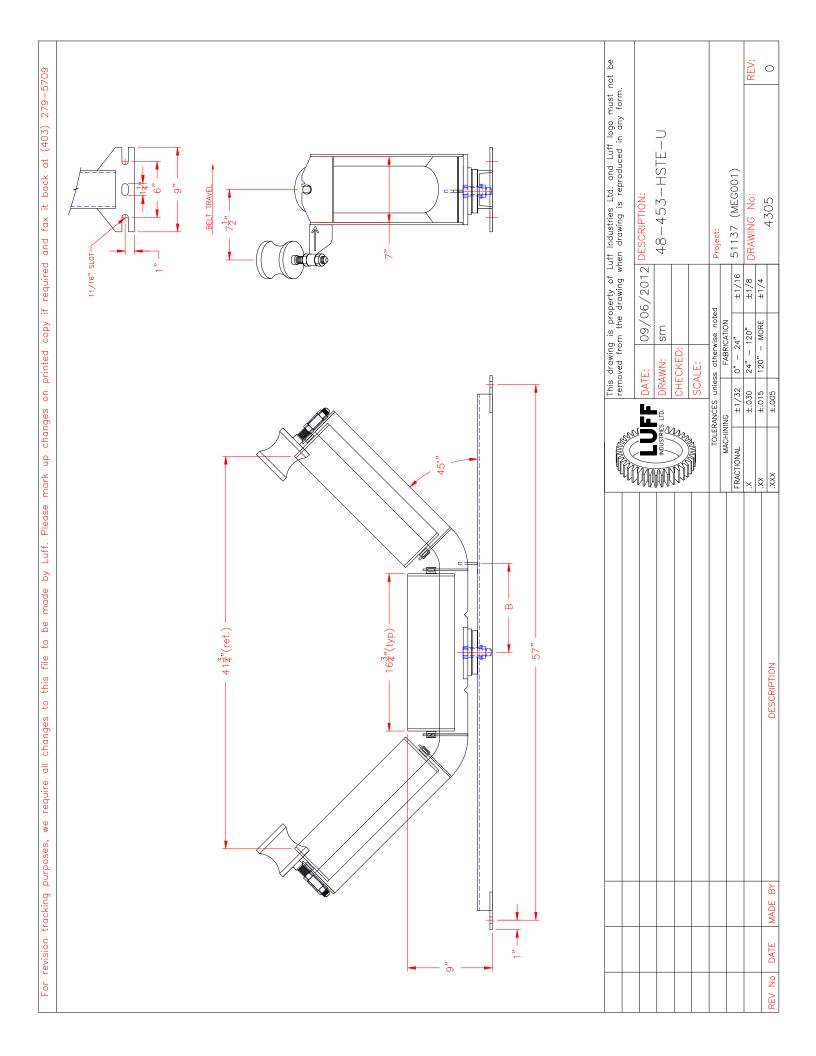

Item	Action and Frequency			Comment
	Daily	Weekly	Monthly	Comment
General Operation	Visual			
Belting	Tracking		Wear	
Electric Motors			Clean vents	Grease per motor manual
Gear Reducers			Check seals. Check oil level.	Replace oil every two years min.
Bearings		Grease	Check seals.	
Motion Detector			Check operation	
Safety Switches			Check operation	

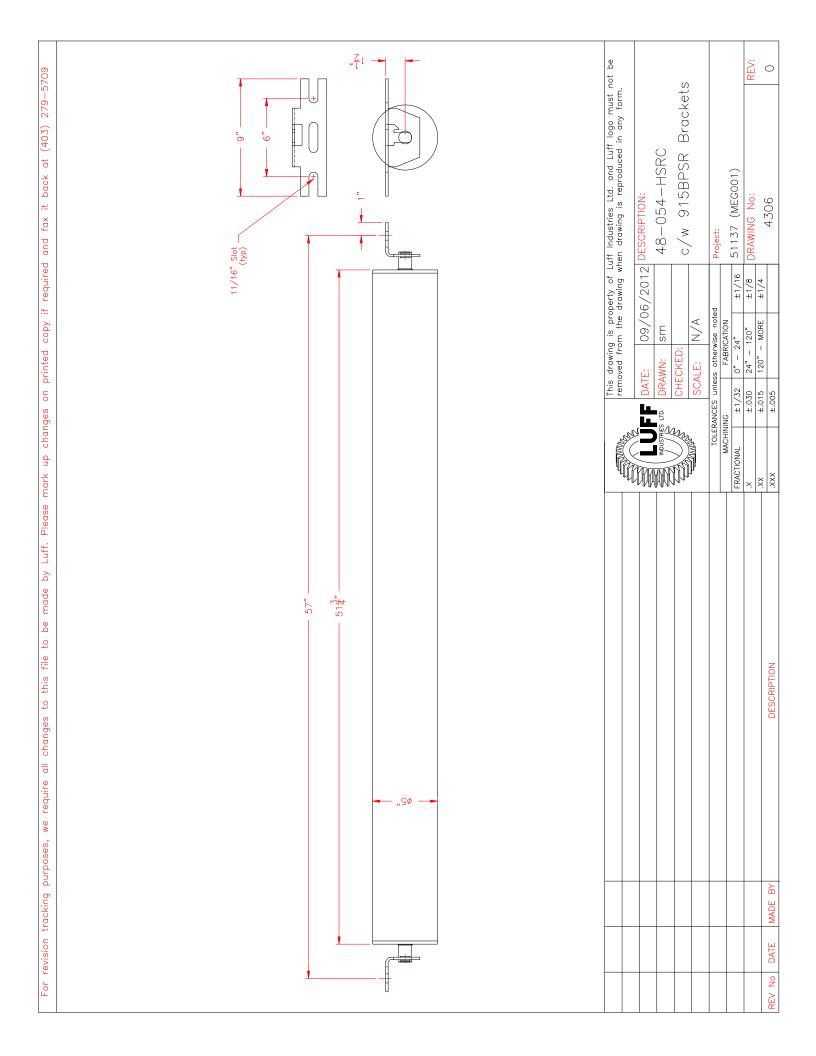

Lubrication intervals depend on use/conditions and should be altered accordingly

6. DATA SHEETS

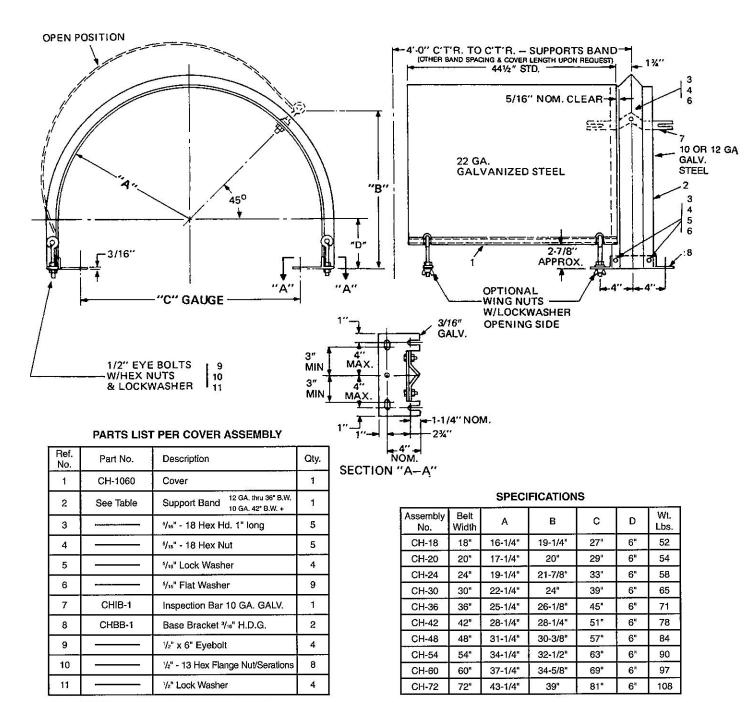

6.1 SEW Gear Reducer



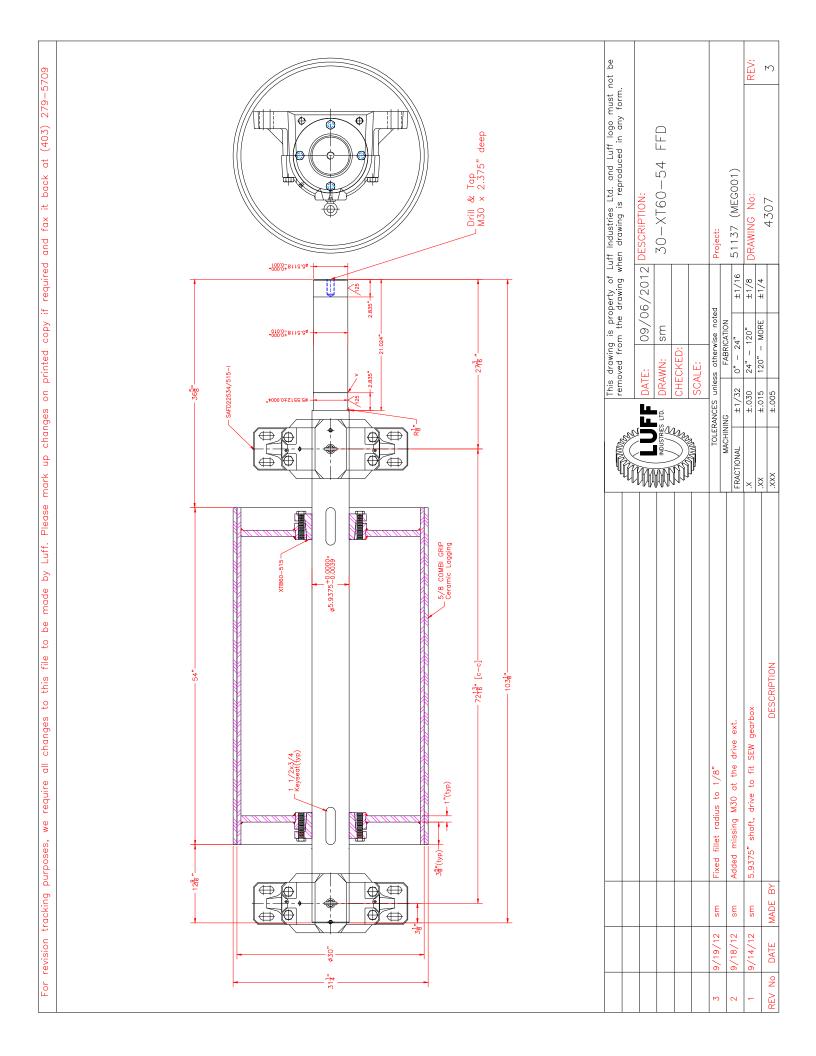


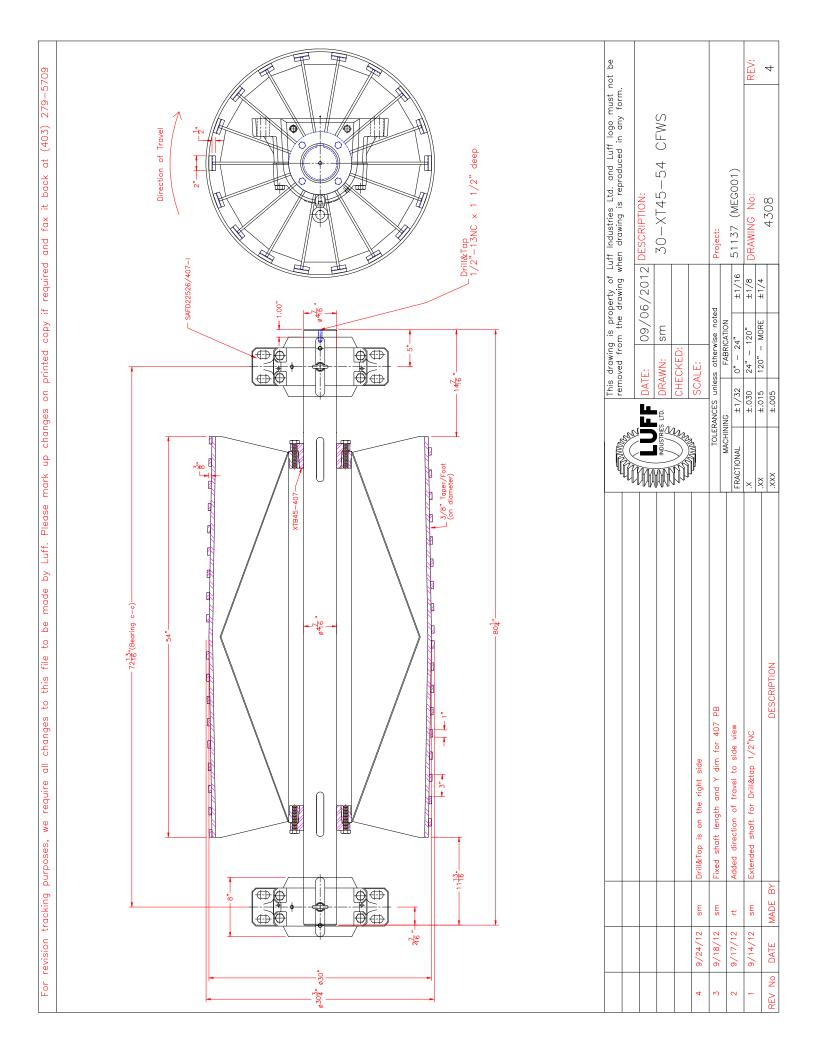


6.2 LUFF Components



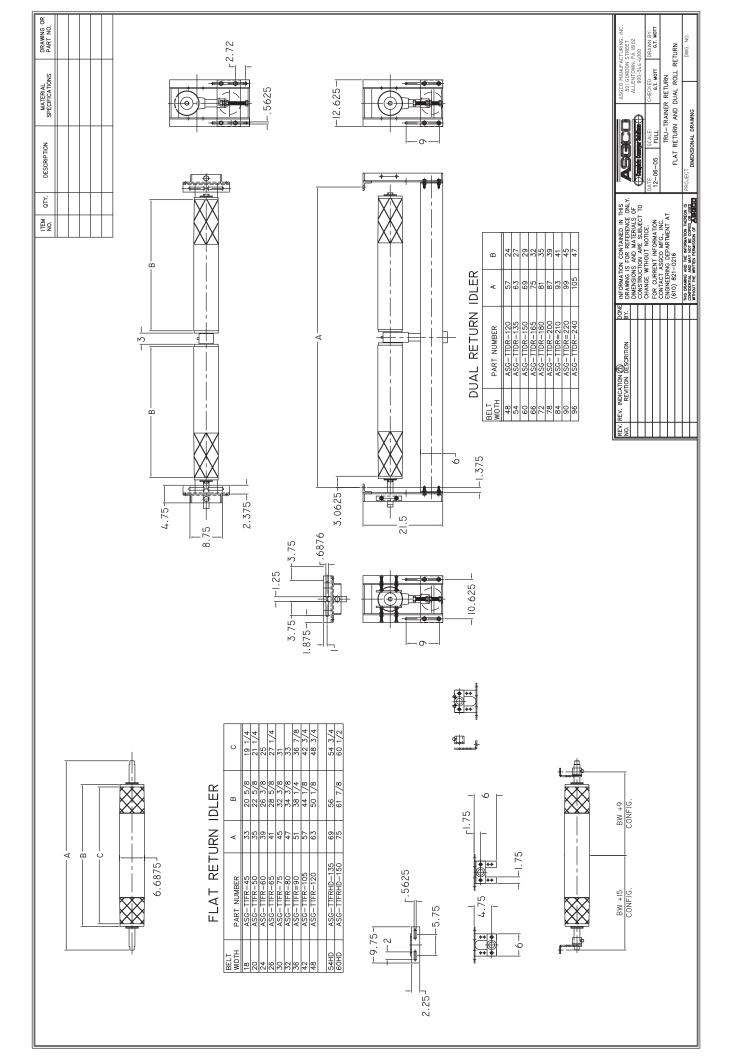
CH-SERIES FULL SMOOTH COVERS

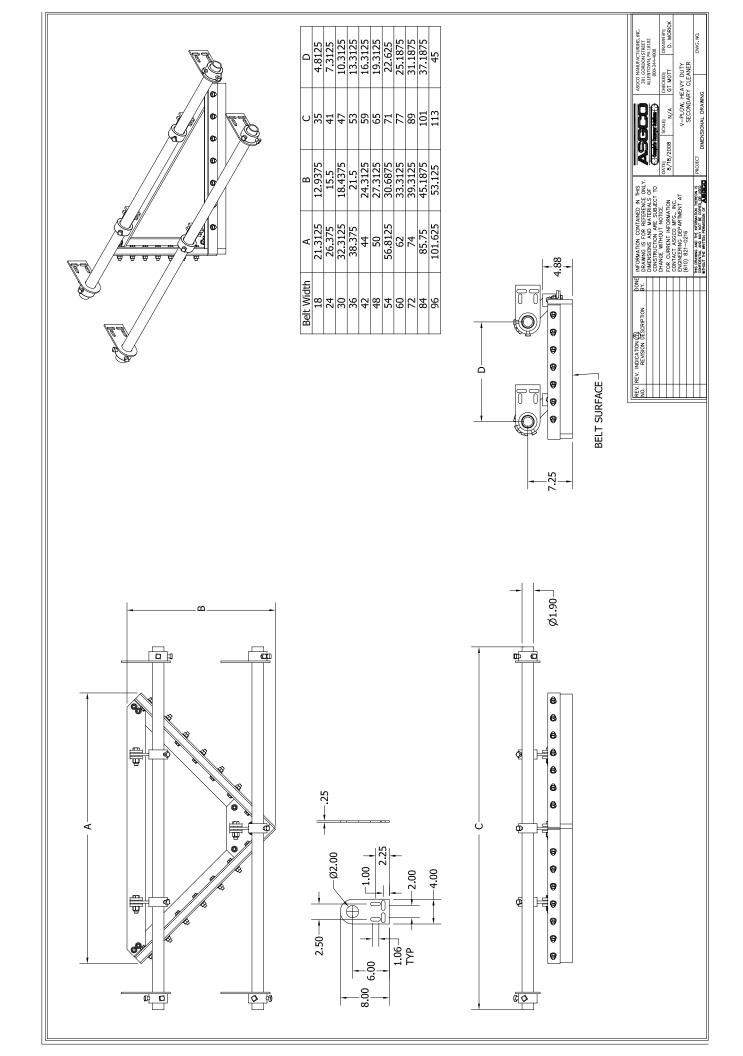


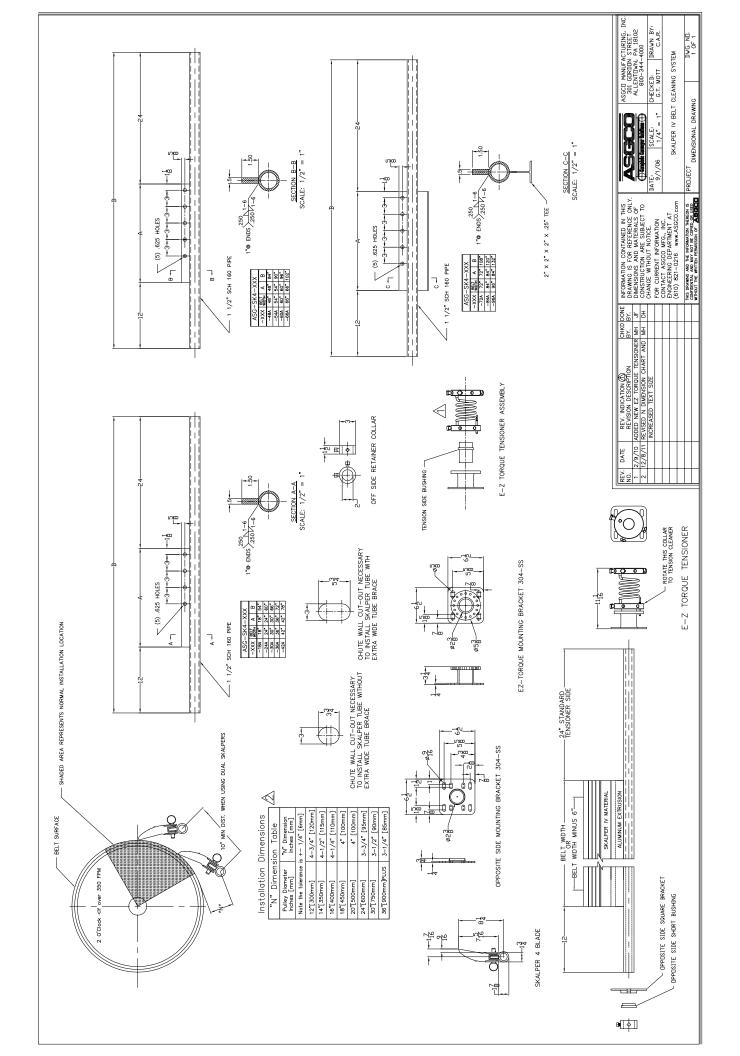

(ALL STANDARD PARTS ARE ZINC PLATED OR HOT DIPPED GALV.)

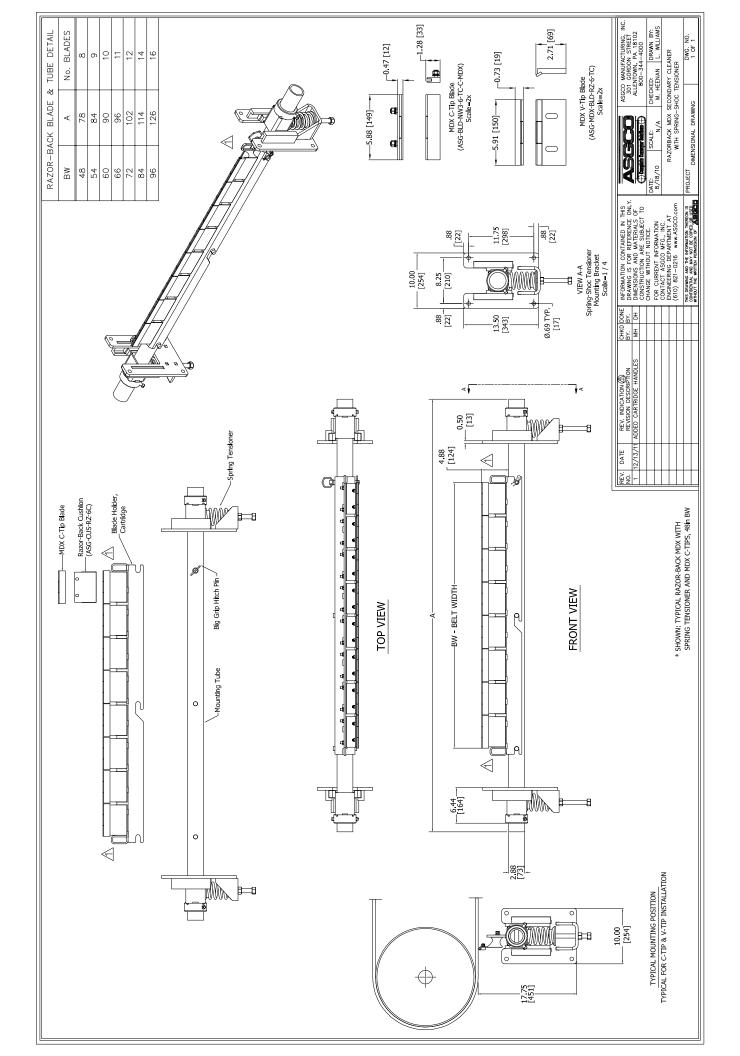
STANDARD COVERS ARE GALVANIZED STEEL. ALUMINUM, STAINLESS STEEL, AND PAINTED AVAILABLE. ALL DIMENSIONS ARE STANDARD. OTHER OPTIONS ARE AVAILABLE ON REQUEST.

INSTALLATION PROCEDURE:


- 1. BOLT BASE BRACKETS AND INSPEDTION BARS TO SUPPORT BANDS.
- 2. LOCATE SUPPORT BANDS ON4'0" CENTER ON CONVEYOR.
- 3. DRILL 11/16" DIA. HOLES IN CONVEYOR TO MATCH BASE BRACKET.
- 4. BOLT BANDS TO CONVEYOR WITH INSPECTION BAR ON DESIRED SIDE.
- FASTEN COVERS TO SUPPROT BANDS USING EYEBOLTS WITH NUTS AND LOCK WASHERS (WING NUTS ON OPENING SIDE OPTIONAL.)






1 1/8 9/16 Take—up Frame (Customer) 3/4 3/4 1/8 2/8 This drawing is property of Luff Industries Ltd. and Luff logo must not be removed from the drawing when drawing is reproduced in any form. REV: ≥ 0 For revision tracking purposes, we require all changes to this file to be made by Luff. Please mark up changes on printed copy if required and fax it back at (403) 279-5709 3 3/8 2 3/4 3 1/4 Heavy Duty (PSHD) 4 3/4 4 3/4 9 2 9 9 22 1/2 26 9 24 75 ш 4 9 17 7 03/09/2012 DESCRIPTION: DRAWING No: 17 1/2 16 12 4 19 21 \vdash 12 Customer 10 1/4 13 1/2 16 1/2 6 5/8 7 3/8 15 1/4 12 თ 0 ш ±1/16 ±1/8 <u>→</u> | 5,000 ±1/4 PSHD-315-TRAVEL PSHD-407-TRAVEL PSHD-415-TRAVEL PSHD-115-TRAVEL PSHD-207-TRAVEL PSHD-215-TRAVEL PSHD-307-TRAVEL PSHD-107-TRAVEL PSHD-203-TRAVEL TOLERANCES unless otherwise noted MACHINING FABRICATION ∀ N 120" - MORE S \oplus Part No. 24" - 120" 0" - 24"54-CHECKED: DRAWN: SCALE: DATE: ±1/32 ±.030 ±.015 ±.005 FRACTIONAL $\left|\stackrel{\times}{\times}\right|\stackrel{\times}{\times}$ DESCRIPTION TRAVEL + E slot øM 2 OR 4 – places MADE BY DATE REV No

6.3 Asgco Components

6.4 Crouse	-Hinds Pu	11 Switches

AFU and AFUX Conveyor Belt Control Switch

CI. I, Div. 1 & 2, Groups C, D CI. II, Div. 1, Groups E, F, G CI. II, Div. 2, Groups F, G CI. III NEMA 3, 4, 7CD, 9EFG Explosionproof
Dust-Ignitionproof
Raintight
Wet Locations

Applications:

AFU and AFUX conveyor control switches are used:

- As emergency or normal "STOP" switch for conveyor lines, cranes, unloaders, bulk handling systems and similar equipment
- In steel mills, mining and ore and coal handling operations, automotive and other assembly lines, warehouses, loading docks and various process industry facilities
- In the control circuit of magnetic motor starters to shut down motor-driven conveyors or other machinery when switch is actuated

AFU series complies with requirements for use in Class II areas having combustible dusts that may or may not be electrically conductive.

AFU series are also gasketed for use in hosedown areas even when combustible dusts are present.

AFUX series complies with requirements for use in NEC Class I areas which are hazardous due to the presence of flammable vapors or gases. AFUX series also complies with requirements for use in NEC Class I areas which are hazardous due to the presence of flammable vapors or gases. AFUX series also complies with NEC requirements for use in Class II hazardous areas, or for use in NEC hazardous areas classified simultaneously as Class I and Class II.

Features:

- Furnished with one or two end units, each containing 2-NO and 2-NC contact arrangements.
- Precision switches provide maintained contact (switches have a snap action mechanism).
- Enclosure has three 1" conduit hubs two for horizontal through feed and one at the bottom. Cast mounting lugs on 1½" centers permit attachment to the web of a standard 3" angle iron.
- In installation, the actuating line or cable is connected from a fixed point to the loop on the end unit. A pull on the line of the required operating force and with a total movement of ½" actuates the plunger, opens the switch and trips the red painted indicating arm forward, which locks the plunger in the actuated (switch open) position. Returning the indicating arm to its normal position resets the mechanism. A typical installation would include single end switch units at each end of the conveyor with double end switch units between.
- Depending on the size and length of line, supports at properly spaced intervals may be necessary to ensure that the line or cable weight alone will not actuate switch.

Certifications and Compliances:

AFU Series

- NEC/CEC:
 - Class II, Division 1, Groups E, F, G Class II, Division 2, Groups F, G Class III
- Encl. 3, 5
- NEMA: 3, 4, 9EFG
- IP66
- UL Standard: 698
- CSA Standard: 22.2 No. 30

AFUX Series

- NEC:
 - Class I, Division 1 & 2, Groups C, D Class II, Division 1, Groups E, F, G Class II, Division 2, Groups F, G Class III
- NEMA: 3, 7CD, 9EFG
- IP65
- UL Standard: 698
- cUL

Standard Materials:

- Enclosure Feraloy® iron alloy
- Plunger stainless steel
- Loop bronze
- Indicating arm steel

Standard Finishes:

- Feraloy iron alloy electrogalvanized and aluminum acrylic paint
- Steel electrogalvanized with chromate finish (red acrylic paint on indicating arm)
- Bronze natural

Options:

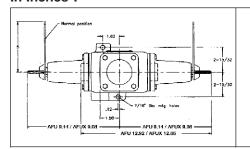
 Description
 Suffix

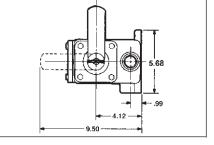
 Finish: Corro-free™ epoxy powder coat – for coating outside only.
 \$752

Electrical Rating:

 Control circuit switch – 15 AMP, 600 VAC max.

AFU0333-50 Single end left


AFU0333-66 Double end


Ordering Information

Description	Maximum Weight of Unsupported Line or Cable Without Actuating Switch† (lbs.)	Total Operating Force Required (lbs.)	Contact Arrangements With 2-NO, 2-NC in Each End Unit Cat. # Cat. #	
Single end left	15	25	AFU0333 50	AFUX0333 50
Single end left	25	50	AFU0333 60	AFUX0333 60
Single end right	15	25	AFU0333 05	AFUX0333 05
Single end right	25	50	AFU0333 06	AFUX0333 06
Double end	15	25	AFU0333 55	AFUX0333 55
Double end	25	50	AFU0333 66	AFUX0333 66

[†]A galvanized steel aircraft cable, supported every 10' is recommended.

Dimensions In Inches*:

^{*}Dimensions are approximate, not for construction purposes.

6.5 Conveyor Components Co. Alignment Switch

CONVEYOR COMPONENTS COMPANY

130 Seltzer Road, PO Box 167 ◆ Croswell, MI 48422 USA
PHONE: (810) 679-4211 ◆ TOLL FREE (800) 233-3233 ◆ FAX: (810) 679-4510
Email: info@conveyorcomponents.com ◆ http://www.conveyorcomponents.com

<u>CT PROBE INSTRUCTIONS MODELS CT-200, CT-201, CT-200G, CT-201G, CT-200N, CT-201N</u> AND OPTIONS

PROBE SPECIFICATIONS:

The standard heavy-duty probe model CT-201 and the intrinsically safe probe model CT-201G are 9" long each

The compact probe model CT-200 and the intrinsically safe probe model CT-200G are 6" long each.

Each probe contains one SP/ST, normally closed, mercury switch.

The CT-200N and CT-201N contain non-mercury switches.

Probes are available in optional stainless steel construction and with a paddle for use in applications where the materials are moving.

CT-200, CT-201 Probe ratings: 1.7 A @ 120VAC, 0.75 A @ 220VAC, 1.7 A @ 0-50VDC

Probe signal voltage: 15 VDC

Probe actuation angle: 15° from vertical

CT-200G, CT-201G (UL) ratings: 1.7 A @ 120VAC, 1.5mA @ 5VDC

Probe signal voltage: 15 VDC

Probe actuation angle: 15° from vertical

CT-200N, CT-201N ratings: 0.25 A max., 60 V max., 3 VA max.

Probe signal voltage: 15 VDC

Probe actuation angle: Break 25° +/- 10° from vertical; Remake 8° min.

WARNING: Probe models CT-200G and CT-201G are intrinsically safe only when properly

connected to Conveyor Components Company manufactured intrinsically safe CT

control models CT-103 and CT-104.

WIRING:

All wiring should be in compliance with applicable Local, Federal, and State codes. Probe connection cable is 16-2 type SO and is attached to the probe. Probe cable length is supplied as specified per order, and may be spliced.

Intrinsically safe probes are attached to 16-3 type SO connection cable, and the cable length is supplied as specified per order up to a maximum of 175 ft. The cable for intrinsically safe probes may be spliced, with the total cable length up to 175 ft maximum.

PROBE INSTALLATION:

The probe should be suspended using a fixed support at a position where it will easily intercept the bulk material at the desired indication point. There must be a free flow of material both to and away from the probe. In some installations, it is necessary to install a baffle or shield above the probe assembly to protect it from product surges.

Figure1: PROBE DIMENSIONS

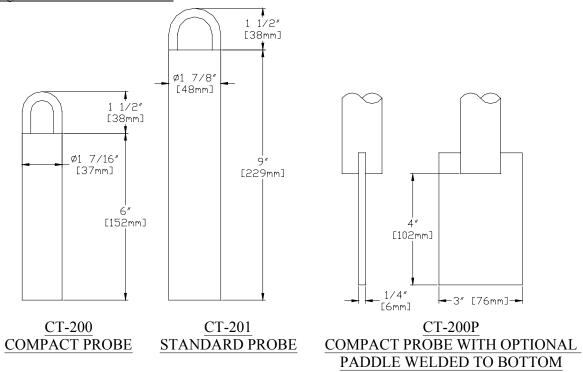
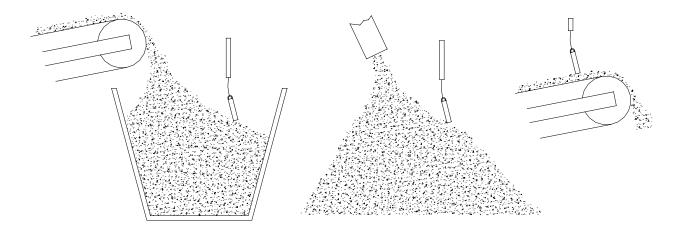
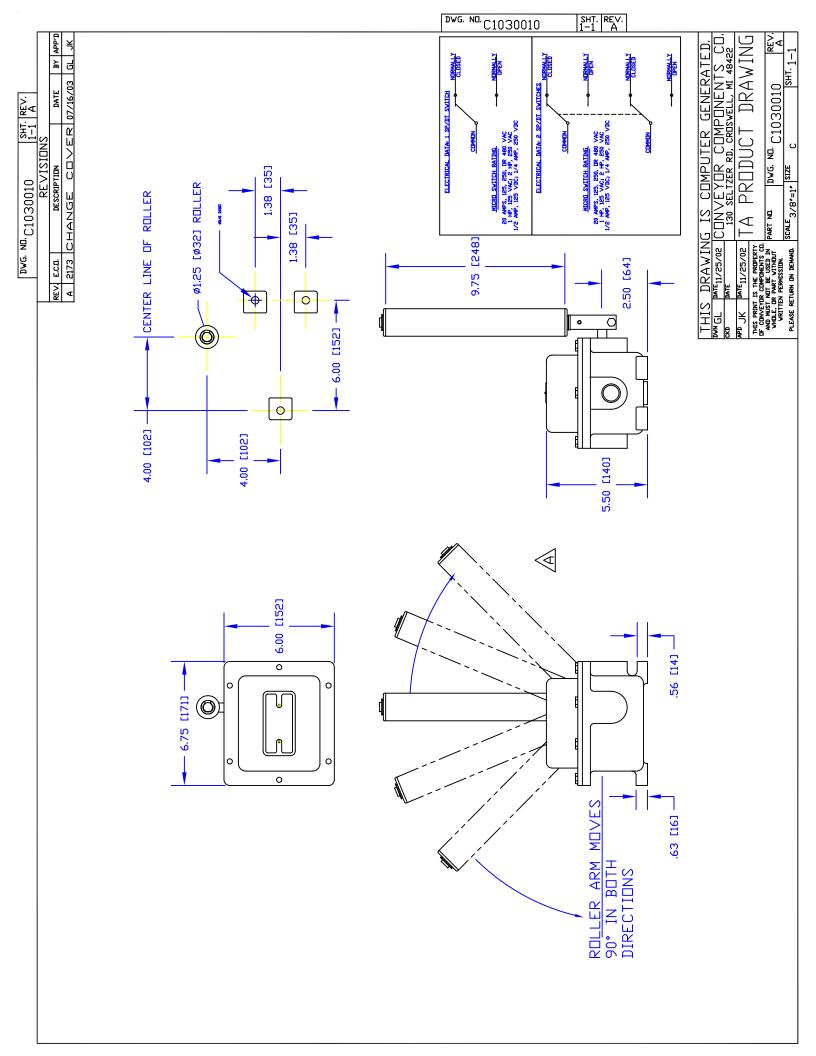




Figure2: TYPICAL INSTALLATIONS

REV. E.C.O. DESCRIPTION DATE BY APP'D	CT-400 MOUNTING BRACKET - 1.875 - 1.875 - 1.875 - 1.875	3.250 [133 mm] (R3 mm) (R3 mm) (R3 mm) (R4 CONVE	ONE OFFICE STATES OF THE STATE
	CT-200 COMPACT PROBE	E.500 [152 mm]	
	CT-201 STANDARD PROBE	3.250 [83 mm] 90000 [229 mm] [48 mm]	

6.6 - 4B M800 Elite Speed Switch

M800 Elite Speed Switch

BETTER BY DESIGN

M800 Elite Speed Switch

Monitors Rotating Machinery for Dangerous Underspeed Conditions

APPLICATION

The M800 Elite Speed Switch is the industry standard inductive proximity sensor for monitoring shaft underspeed conditions. With two underspeed relay contact outputs and a pulse output, the self contained unit provides the user with easy on site installation and consistent reliability. Totally sealed and simple to calibrate, the M800 Elite works in the harshest of conditions. Used on conveyors, bucket elevators, airlocks, mixers, fans, grinders and many other machines.

METHOD OF OPERATION

An inductive sensing device located in the nose of the M800 Elite enclosure will detect a metal target. This target can be an existing bolt head or device attached to a shaft. During installation the M800 Elite is set to the normal machine shaft RPM by calibrating with the magnet provided. The internal microprocessor sets the under speed relays to operate at exactly 10% and 20% below normal machine shaft RPM. So users are able to use the relay contacts to provide a warning when the shaft starts to slow down (10% underspeed) and provide an automatic shutdown at 20%. If required, the M800 Elite has an additional pulsed output, which can be connected to display actual shaft RPM on a PLC or speed display.

FEATURES

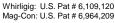
- ► Universal Voltage (24 240 VAC/VDC)
- ▶ Dual Set-Points: 10% and 20%
- ► Totally Sealed Construction: Submersible
- ► Microprocessor Accuracy
- ► Built In Conduit Adaptor (1/2" NPT)
- ► LED Indication
- ► CSA / NRTL Class II, Div. 1 Groups E, F & G Approved
- ► IP67 Protection

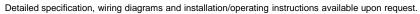
PART NUMBERS/ACCESSORIES

► M8001V10C M800 Elite Speed Switch ► WG1-4B-4 Whirligig® Shaft Sensor Mount

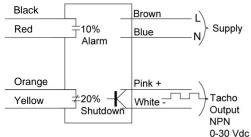
► MAG2000 Mag-Con™ Magnetic Connector for Whirligig

► TACH3V5 Tacho Display





Please refer to instruction manual for correct installation. Information subject to change or correction. Nov 2010



M800 Elite Speed Switch

DIMENSIONS

BETTER BY DESIGN

CONNECTIONS

The diagram above shows the state of the internal contacts when power is applied to the M800. See installation manual for onsite wiring procedure. The alarm contact closes when the speed falls below 10% of set speed. The shutdown contact opens when the speed falls below 20% of set speed or power supply is interrupted. The unit can be used with or without the tacho output. High clarity 6 digit tachometer/speed displays are available for connection to the unit.

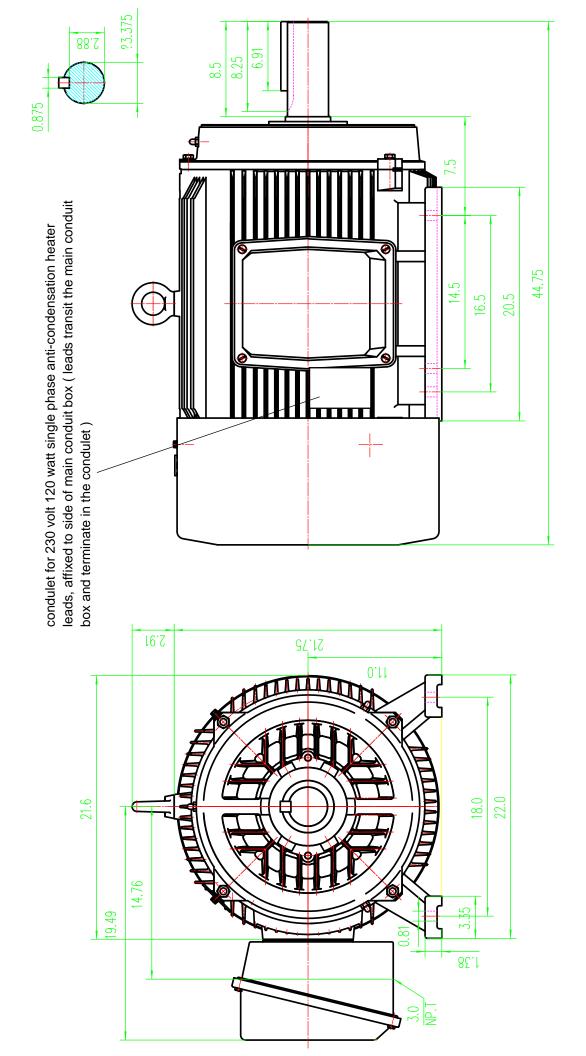
TECHNICAL SPECIFICATIONS M800 Elite Speed Switch - Underspeed Sensor

M8001V10C				
Power Supply:	24 - 240 VAC/VDC universal voltage			
Power Consumption:	6 VA			
Fuse:	5 amp maximum			
Speed Range:	10 - 3,600 PPM (pulses per minute)			
Sensing Range:	11/32" (9mm) max. ferrous target 7/32" (6mm) max. non-ferrous target			
Start Up Delay:	User selectable 0 - 15 seconds			
Contact Rating:	3A 240 VAC non-inductive			
Calibration:	Magnetic			
Trip Point:	10% underspeed alarm, 20% underspeed shutdown. Alternate 5% alarm and 10% shutdown available.			
Outputs:	 Normally open (powered up) contact closing when speed falls by 10% Normally closed contact opening when speed falls by 20% Tacho output opto-isolated to 30v, 100mA max. 			
LED Indicator:	Red LED indicates input pulses. Green LED shows output at nominal speed and acts as a calibration aid.			
Cable:	6' (2m) 8 conductor			
Approval:	CSA / NRTL Class II Div 1 Groups E, F & G (US and Canada)			
Protection:	IP67			

Front View of M800 Elite Showing:

- Input LED (Red)
- Set LED (Green)
- Calibrate Point (Magnetic)

Detailed specification, wiring diagrams and installation/operating instructions available upon request.

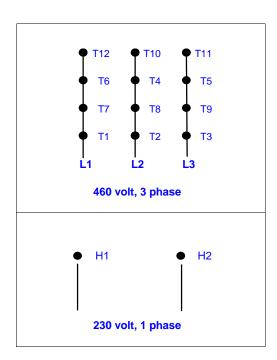

Please refer to instruction manual for correct installation. Information subject to change or correction. Nov 2010

Note: All dimensions in inches. $1\frac{5}{32}$ $\overline{\oplus}$ \bigcirc Input Set CALIBRATE (\oplus \oplus $\emptyset \frac{1}{4} \times 4$ 1/2" NPT THREADED **CONDUIT ENTRY 6FT OF CABLE** 8 X 20 AWG OVERALL **JACKET DIAMETER 8.3mm** Description: M8001V1FC 110 VOLT SPEEDSWITCH. CSA APPROVED CLASS II DIV I GROUPS E, F AND G. Components Limited www.go4b.com Change Note Drawn Check **Brief Description**

6.7 Ultraline 150 HP Electric Motor

DATA SHEET

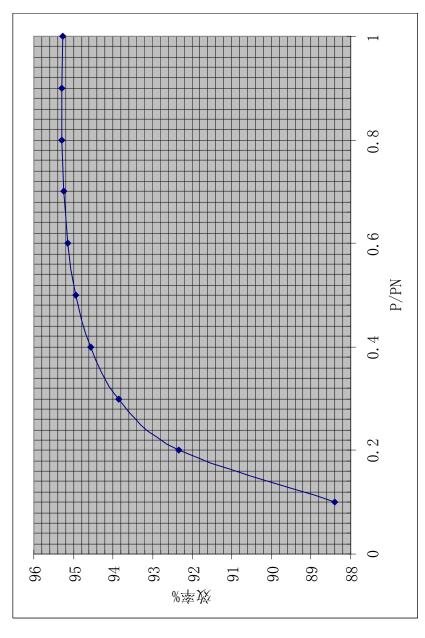
Cat. No.	MUV452-BB-23	0SH	
Manufacturer	ULTRAline		
Series	PE		
Construction	cast iron motor	r	
Frame Size	445T		
IP	54		
IC	411		
Insulation class	F		
Output	111.9	kW	150 HP
Poles	4		
Voltage	460	V	
Connection	DELTA		
Frequency	60	Hz	
Full load current	166.6	amps	
Efficiency at full load	95.8	%	
Power factor at full load	0.88		
Speed at full load	1790	rpm	
Full load torque in newton metres	597.0	Nm	
Locked rotor current as a			
percentage of full load current	589	%	
Locked rotor torque as a			
percentage of full load torque	165	%	
Breakdown torque as a percentage			
of full load torque	235	%	
DE. Bearing	6318		
N.D.E. Bearing	6316		
Approx Weight	905	kg	
		_	
Environment Conditon			
Ambinent temperature	40	${f c}$	
Altitude above sea level	1000	m	
Mounting method(IM)	B3	horizontal	



ULTRAline PE Series, frame size 445T, Cat. No. MUV452-BB-230SH

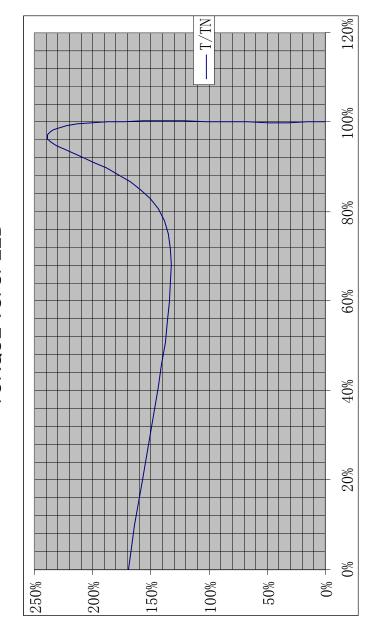
THINK = ULTRAline =

150 HP 460 volt 3 phase motor connections


230 volt motor single phase anticondensation heater connections

OUTPUT/RATED LOAD

Efficiency Curve


EFF.

MUV452-BB-230SH

150 VOLTS 460 RPM 1790

FRAME 445T HZ 60 PHASE 3 DESIGN E

TORQUE VS. SPEED

% SYNCHRONOUS SPEED

6.8 Goodyear Plylon

Plylon®

DESCRIPTION:

Plylon® is a polyester reinforced conveyor belt that provides an economical alternative to

Plylon Plus® in less-demanding applications.

Markets

- Aggregate
- Cement
- Crushed Stone
- Hard Rock
- Power Generation
- Sand and Gravel
- Steel Production

Applications

- Block Plants
- Load Out
- Radial Stackers
- Ready Mix
- Stacker Conveyors
- Trash and Recycling Plants
- Wash Plant

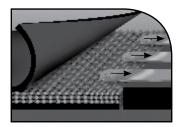
Cover Compounds

- 6740A
- ARMA®-SBR
- Defender®
- HT Nitrile
- OMEGA®

(See pages 82-87 for more specific details.)

See the process diagram for Aggregate, Hard

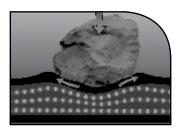
Rock Mining, Sand and Gravel markets on


page 7 for alternative belt recommendations.

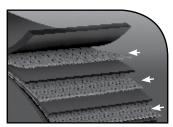
GET A LOWER COST-PER-TON CONVEYED.

Features & Benefits

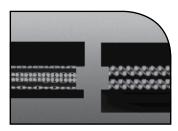
Excellent fastener retention



Plylon belt constructions offer superior mechanical fastener holding. Heavy polyester/ polyester cords positioned for maximum strength resist fastener pull-out even in abusive conditions.


Reduced stretch

The combination of fabric design and dip process provides lower elasticity and permanent elongation on all specifications. This minimizes take-up concerns and reduces the number of splices at break-in. Contact your local GTM to calculate permanent and elastic elongation requirements for your specific systems.


High-strength crimped cords absorb impact

By straightening on impact, the crimped warp cords enable the fabric to absorb impact loads and resist tearing. Plylon belting maintains the integrity of mechanical or vulcanized splices under demanding conditions.

Polyester/Polyester fabric carcass

Plylon belting is designed to handle sand, gravel, and small stone applications. The polyester fabric reinforcement provides greater breaking strength, impact and tear resistance than competitive brands.

Variety of cover compounds and cover gauges

Protect your product with the proper compound and cover gauge for the application.

PLYLON CONVEYOR BELT DATA - Imperial

	PLYLON 220/2	PLYLON 330/3	PLYLON 440/4
Number of Plies	2	3	4
Fabric Type*	P/P	P/P	P/P
Vulcanized & Fastener Rating (piw)	220	330	440
Carcass Gauge (in.)	0.120	0.162	0.219
Carcass Weight (1bs/sq.ft.)	0.73	0.98	1.32
Approx 1/32" cover wt (lbs/sq.ft.)	0.19	0.19	0.19
Avg. Permanent Elongation (%) **	0.80	0.80	0.80
Elastic modulus (piw)	23,000	34,500	46,000
Step Length (in.)	10	10	10
Recommended Fastener Plate	140	190	BR-10
Hinge	R2	R2	R5
Hinge	U3 <i>5</i> A	U35A	U35

Plylon rated belt tension can exceed 100%, with a maximum of 150%, during starting and stopping conditions.

Fastener size recommendation may vary due to cover thickness, pulley diameters and system tension. Consult your GTM or fastener manufacturer.

*P/P = Polyester/Polyester

PLYLON LOAD SUPPORT (Maximum Belt Width) (in.)

1	PIW/Plies	Material Weight	0-	-40 lbs/cu.f	t.	4	1-80 lbs/cu.	ft.	8	1-120 lbs/c	u.ft.	Ov	er 120 lbs/c	zu.ft.
		Trough Idlers	20 deg	35 deg	45 deg	20 deg	35 deg	45 deg	20 deg	35 deg	45 deg	20 deg	35 deg	45 deg
	220/2		48	42	36	48	36	36	42	36	30	36	30	NR
	330/3		60	54	48	60	48	42	54	48	42	48	42	36
	440/4		72	60	54	66	60	48	60	54	48	54	48	42

On systems with troughing idler spacing greater than 5 ft. OR idler roll gap greater than 1/2", consult your GTM.

PLYLON TROUGHABILITY (Minimum Belt Width) (in.) (Table based on ISO 703 Testing Procedure)

Idlers	PLYLON 220/2	PLYLON 330/3	PLYLON 440/4
20 degree idlers	18	18	24
35 degree idlers	18	24	30
45 degree idlers	24	30	36

If top cover and pulley cover are balanced (ie. 3/16"x3/16") or less than 1/16" differential (ie. 3/16"x5/32"), add 6" to the minimum belt width.

6" narrower widths are possible if the belt is broken in for an extended period of time fully loaded. Consult your GTM.

Additional break in time is required when the belt has been stored prior to insulation in ambient temperatures of less than 50 degrees Fahrenheit

Above tables are based on top cover gauge equal or greater than the bottom (pulley) cover gauge

PLYLON MINIMUM PULLEY DIAMETERS (in.)

	PLYLON 220/2	PLYLON 330/3	PLYLON 440/4
Number of Plies	2	3	4
Over 80% Tension	16	18	24
60% to 80% Tension	14	16	20
40% to 60% Tension	10	12	16
Up to 40 % tension	10	12	16
Tails and Snubs	10	12	16

PLYLON ELEVATOR DATA - IMPERIAL

	PLYLON 220/2	PLYLON 330/3	PLYLON 440/4
Number of Plies	2	3	4
Fabric Type*	P/P	P/P	P/P
Industrial Service tension Capacity (piw)	170	250	350
Carcass Gauge (in.)	0.120	0.162	0.219
Carcass Weight (lbs/sq.ft.)	0.73	0.98	1.32
Approx 1/32" cover wt (lbs/sq.ft.)	0.19	0.19	0.19
Elastic modulus (piw)	23,000	34,500	46,000

Plylon rated belt tension can exceed 100%, with a maximum of 150%, during starting and stopping conditions. Consult Goodyear for fastener manufacturer. *P/P = Poly/Poly

PLYLON MAXIMUM BUCKET PROJECTION (in.)

	PLYLON	PLYLON	PLYLON
	220/2	330/3	440/4
Number of Plies	2	3	4
Spaced Industrial Max. Bucket Projection	6	7	10
Continuous Industrial Max. Bucket Projection	5	7	10

^{**} Average Permanent elongation values at 100% of rated belt tension are based on ISO 9856 test procedure. Consult your GTM or GAD for elastic & total elongation calculations.

PLYLON CONVEYOR BELT DATA - Metric

	PLYLON 220/2	PLYLON 330/3	PLYLON 440/4
Number of Plies	220/2	330/3	440/4
Fabric Type*	P/P	P/P	P/P
Vulcanized & Fastener Rating (kN/m)	39	58	77
Carcass Gauge (mm)	3.05	4.11	5.56
Carcass Weight (kg/sq.m)	3.6	4.8	6.4
Approx 1 mm cover wt (kg/sq.m)	1.2	1.2	1.2
Avg. Permanent Elongation (%) **	0.80	0.80	0.80
Elastic modulus (kN/m)	4028	6042	8056
Step Length (mm)	250	250	250
Recommended Plate Fastener	140	190	BR-10
Hinge	R2	R2	R5
Hinge	U35A	U35A	U35

Plylon rated belt tension can exceed 100%, with a maximum of 150%, during starting and stopping conditions.

PLYLON LOAD SUPPORT (Maximum Belt Width) (mm)

-	PIW/Plies	Material Weight	0-40 lbs/cu.ft.		41-80 lbs/cu.ft.		81-120 lbs/cu.ft.		Over 120 lbs/cu.ft.					
		Trough Idlers	20 deg	35 deg	45 deg	20 deg	35 deg	45 deg	20 deg	35 deg	45 deg	20 deg	35 deg	45 deg
-	220/2		1200	1050	900	1200	900	900	1050	900	750	900	750	NR
ı	330/3		1500	1400	1200	1500	1200	1050	1400	1200	1050	1200	1050	900
	440/4		1850	1500	1400	1850	1400	1200	1500	1400	1200	1500	1200	1050

On systems with troughing idler spacing greater than 1.5 m OR idler roll gap greater than 12.7mm, contact your GTM.

PLYLON TROUGHABILITY (Minimum Belt Width) (mm) (Table based on ISO 703 Testing Procedure)

	PLYLON	PLYLON	PLYLON
Idlers	220/2	330/3	440/4
20 degree idlers	350	450	600
35 degree idlers	450	600	750
45 degree idlers	600	750	900

If top cover and pulley cover are balanced (ie. 5mm x 5mm) or less than 2 mm differential (ie. 4mm x 3mm), add 150 mm to the minimum belt width

150mm narrower widths are possible if the helt is broken in for an extended period of time fully loaded. Consult your GTM.
Additional break in time is required when the helt has been stored prior to insulation in ambient temperatures of less than 10 degrees Centigrade

Above tables are based on top cover gauge equal or greater than the bottom (pulley) cover gauge.

PLYLON MINIMUM PULLEY DIAMETERS (mm)

	PLYLON 220/2	PLYLON 330/3	PLYLON 440/4
Number of Plies	2	3	4
Over 80% Tension	400	450	600
60% to 80% Tension	350	400	500
40% to 60% Tension	250	300	400
Up to 40 % tension	250	300	400
Tails and Snubs	250	300	400

PLYLON ELEVATOR BELT DATA - METRIC

	PLYLON 220/2	PLYLON 330/3	PLYLON 440/4
Number of Plies	2	3	4
Fabric Type	P/P	P/P	P/P
Industrial Service tension Capacity (Kn/M)	30	44	61
Carcass Gauge (mm)	3.05	4.11	5.56
Carcass Weight (kg/sq.m)	3.6	4.8	6.4
Approx 1 mm cover wt (kg/sq.m)	1.2	1.2	1.2
Elastic modulus (kN/m)	4028	6042	8056

Plylon rated belt tension can exceed 100%, with a maximum of 150%, during starting and stopping conditions.

Consult Goodyear for fastener manufacturer.

*P/P = Poly/Poly

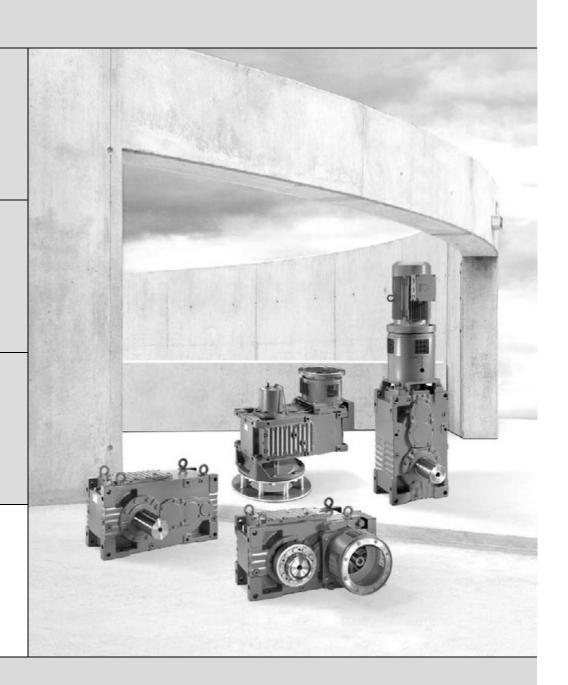
PLYLON MAXIMUM BUCKET PROJECTION (mm)

	PLYLON 220/2	PLYLON 330/3	PLYLON 440/4
Number of Plies	2	3	4
Spaced Industrial Max. Bucket Projection	150	180	250
Continuous Industrial Max. Bucket Projection	125	180	250

Fastener size recommendation may vary due to cover thickness, pulley diameters and system tension. Consult your GTM or fastener manufacturer.
*P/P = Polyester/Polyester
** Average Permanent elongation values at 100% of rated belt tension are based on ISO 9856 test procedure. Consult your GTM or GAD for elastic & total elongation calculations.

7. INSTRUCTION GUII	DES

7.1 SEW Gear Unit Operating Instructions



Industrial Gear Units of the MC.. Series

GD110000

Edition 11/2005 11357614 / EN Operating Instructions

Contents

1	Impo	rtant Information about the Operating Instructions						
	1.1	Important information and designated use						
	1.3	Operating notes						
_		. •						
2	Safety Notes							
	2.1	Preface						
	2.2 2.3	General information Personal protective equipment						
	2.3	Transport of industrial gear units						
	2.5	Corrosion and surface protection						
_		•						
3		Unit Design						
	3.1	Basic design of industrial gear units of the MCP series						
	3.2	Basic design of industrial gear units of the MCR series						
	3.3 3.4	Unit designation / nameplates						
	3.5	Mounting surface						
	3.6	Housing orientation M1M6						
	3.7	Shaft positions						
	3.8	Direction of rotation						
	3.9	Lubrication of industrial gear units						
4	Mech	anical Installation	39					
_	4.1	Required tools / resources						
	4.2	Before you begin						
	4.3	Preliminary work						
	4.4	Gear unit foundation						
	4.5	Mounting of solid shaft gear units						
	4.6	Mounting / removing hollow shaft gear units with keyed connection						
	4.6 4.7	Mounting / removing hollow shaft gear units with shrink disc	51					
	4.7	Mounting a motor with motor adapter						
5	4.8		. 57					
5	4.8	Mounting a motor with motor adapter	. 57 . 60 . 60					
5	4.8 Mech	Mounting a motor with motor adapteranical Installation Options	. 57 . 60 . 60					
5	4.8 Mech 5.1 5.2 5.3	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM	. 57 . 60 . 60 . 63 . 78					
5	4.8 Mech 5.1 5.2 5.3 5.4	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM	. 57 . 60 . 60 . 63 . 78 . 81					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame	. 57 . 60 . 63 . 78 . 81 . 84					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm	. 57 . 60 . 63 . 78 . 81 . 84					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM Shaft end pump SHP Installation with steel frame Torque arm Mounting of V-belt drive	. 57 . 60 . 63 . 78 . 81 . 84 . 85					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive Oil heater	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 88					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 88					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 88 . 91 . 97					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Mounting a motor with motor adapter anical Installation Options Important installation instructions. Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive. Oil heater Temperature sensor PT100 SPM adapter. Fan.	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 88 . 91 . 97					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Mounting a motor with motor adapter anical Installation Options Important installation instructions. Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive. Oil heater Temperature sensor PT100 SPM adapter. Fan. Flow switch	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 88 . 91 . 97 . 98 . 99					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	Mounting a motor with motor adapter anical Installation Options Important installation instructions. Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive. Oil heater Temperature sensor PT100 SPM adapter. Fan.	. 57 . 60 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 . 99 100					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter Fan Flow switch Visual flow indicator Connecting the oil/water cooling system Connecting the oil/air cooling system	. 57 . 60 . 60 . 63 . 78 . 81 . 84 . 85 . 88 . 91 . 97 . 98 . 99 100 103 104 104					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter Fan Flow switch Visual flow indicator Connecting the oil/water cooling system	. 57 . 60 . 60 . 63 . 78 . 81 . 84 . 85 . 88 . 91 . 97 . 98 . 99 100 103 104 104					
5	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM Shaft end pump SHP Installation with steel frame Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter Fan Flow switch Visual flow indicator Connecting the oil/water cooling system Connecting the motor pump	. 57 . 60 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 . 99 100 103 104 104					
	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16	Mounting a motor with motor adapter anical Installation Options Important installation instructions. Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter. Fan Flow switch Visual flow indicator Connecting the oil/water cooling system Connecting the motor pump. Jp.	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 100 103 104 104					
	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Start	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM Shaft end pump SHP Installation with steel frame Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter Fan Flow switch Visual flow indicator Connecting the oil/water cooling system Connecting the motor pump	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 100 103 104 104 104					
	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Start 6.1	Mounting a motor with motor adapter anical Installation Options Important installation instructions. Mounting of couplings. Backstop FXM. Shaft end pump SHP. Installation with steel frame. Torque arm. Mounting of V-belt drive. Oil heater. Temperature sensor PT100. SPM adapter. Fan. Flow switch. Visual flow indicator. Connecting the oil/water cooling system. Connecting the oil/air cooling system. Connecting the motor pump. Jp. Startup of MC gear units.	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 . 99 100 103 104 104 104 105					
	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 6.1 6.2	Mounting a motor with motor adapter anical Installation Options Important installation instructions. Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter. Fan Flow switch Visual flow indicator Connecting the oil/water cooling system Connecting the motor pump. Jp. Startup of MC gear units Startup of MC gear units with backstop	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 . 99 100 103 104 104 105 106					
	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Start 6.1 6.2 6.3 6.4	Mounting a motor with motor adapter anical Installation Options Important installation instructions. Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive. Oil heater. Temperature sensor PT100. SPM adapter. Fan Flow switch. Visual flow indicator. Connecting the oil/water cooling system. Connecting the motor pump. Jp Startup of MC gear units Startup of MC gear units with backstop. Startup of MC gear units with steel oil expansion tank Taking MC gear units out of operation.	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 99 100 103 104 104 105 106 106					
6	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Start 6.1 6.2 6.3 6.4	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter Fan. Flow switch Visual flow indicator Connecting the oil/water cooling system. Connecting the motor pump. Startup of MC gear units Startup of MC gear units with backstop Startup of MC gear units with steel oil expansion tank Taking MC gear units out of operation ction and Maintenance	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 . 100 103 104 104 105 106 106 109					
6	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Start 6.1 6.2 6.3 6.4 Inspec	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM	. 57 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 . 99 100 103 104 104 105 106 106 110 110					
6	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 6.1 6.2 6.3 6.4 Inspe 7.1	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter Fan. Flow switch Visual flow indicator Connecting the oil/water cooling system. Connecting the motor pump. Startup of MC gear units Startup of MC gear units with backstop Startup of MC gear units with steel oil expansion tank Taking MC gear units out of operation ction and Maintenance	. 57 . 60 . 60 . 63 . 78 . 81 . 84 . 85 . 91 . 97 . 98 . 99 100 103 104 104 105 106 106 110 111					
6	4.8 Mech 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 Start 6.1 6.2 6.3 6.4 Inspe 7.1 7.2 7.3	Mounting a motor with motor adapter anical Installation Options Important installation instructions Mounting of couplings Backstop FXM. Shaft end pump SHP Installation with steel frame. Torque arm Mounting of V-belt drive Oil heater Temperature sensor PT100 SPM adapter Fan Flow switch Visual flow indicator Connecting the oil/water cooling system Connecting the motor pump Startup of MC gear units Startup of MC gear units with steel oil expansion tank Taking MC gear units out of operation ction and Maintenance Inspection and maintenance intervals Lubricant change intervals	. 57 . 60 . 60 . 63 . 78 . 81 . 84 . 85 . 97 . 98 . 99 100 103 104 104 105 106 106 110 111 112					

Contents

9	Mou	unting Positions	119
	9.1	Symbols used	119
		Mounting positions of MC.P., gear units	
	9.3	Mounting positions of MC.R gear units	
10	Desi	ign and Operating Notes	122
		Guideline for oil selection	
	10.2	Lubricants for MC industrial gear units	126
		Grease	
	10.4	Lubricant fill quantities	129
11	Cha	nge Index	130
		Changes to the previous edition	
12	Inde	Y	133

Important Information about the Operating Instructions

Important information and designated use

1 Important Information about the Operating Instructions

1.1 Important information and designated use

Integral part of the product

The operating instructions are part of the MC.. industrial gear units and contain important information for operation and service. The operating instructions are written for assembly, installation, startup and service employees who are involved in the installation and maintenance of MC.. industrial gear units.

Designated use

The designated use refers to the procedure specified in the operating instructions.

The MC.. industrial gear units are units run by motors for industrial and commercial systems. Gear unit utilizations other than those specified and areas of application other than industrial and commercial systems can only be used after consultation with SEW-EURODRIVE.

In compliance with the EG Machinery Directive 2006/42/EC, the MC.. industrial gear units are components for installation in machinery and systems. In the scope of the EG directive, you must not take the machinery into operation in the designated fashion until you have established that the end product complies with the Machinery Directive 2006/42/EC.

Qualified personnel

MC.. industrial gear units may represent a potential hazard for persons and material. Consequently, assembly, installation, startup and service work may only be performed by trained personnel who are aware of the potential hazards.

The personnel must be appropriately qualified for the task in hand and must be familiar with the assembly, installation, startup and operation of the product. The personnel must read the operating instructions, in particular the safety notes section, carefully and ensure that they understand and comply with them.

Liability for defects

Incorrect handling or any action performed that is not specified in these operating instructions could impair the properties of the product. In this case, you lose any right to claim under limited warranty against SEW-EURODRIVE GmbH & Co KG.

Product names and trademarks

The brands and product names contained within these operating instructions are trademarks or registered trademarks of the titleholders.

Waste disposal

(Please follow the latest instructions):

- Housing parts, gears, shafts and roller bearings of the gear units must be disposed
 of as steel scrap. This also applies to gray-cast iron parts if there is no special
 collection.
- · Collect waste oil and dispose of it according to the regulations in force.

Important Information about the Operating Instructions Explanation of symbols

1.2 Explanation of symbols

Hazard

Indicates an imminently hazardous situation which, if not avoided, WILL result in death or serious injury.

Warning

Indicates an imminently hazardous situation caused by the product which, if not avoided, WILL result in death or serious injury. You will also find this signal to indicate the potential for damage to property.

Caution

Indicates a potentially hazardous situation which, if not avoided, MAY result in minor injury or damage to products.

Note

Indicates a reference to useful information, e.g. on startup.

Documentation reference

Indicates a reference to a document, such as operating instructions, catalog, data sheet.

1.3 Operating notes

- It is essential to contact SEW-EURODRIVE regarding a subsequent change of mounting position!
- The industrial gear units of the MC.. series are delivered without oil fill. Refer to the information on the nameplate!
- Refer to the instructions in the sections "Mechanical Installation" and "Startup"!

2 Safety Notes

2.1 Preface

The following safety notes are concerned with the use of MC.. industrial gear units.

If using gearmotors, please also refer to the safety notes for motors in the corresponding operating instructions.

Please also consider the supplementary safety notes in the individual sections of these operating instructions.

2.2 General information

Never install damaged products or take them into operation.

Submit a complaint to the shipping company immediately in the event of damage.

During or after operation, industrial gear units and motors have:

- · Live parts
- Moving parts
- Hot surfaces (may be the case)

Only qualified personnel may carry out the following work:

- Installation / assembly
- Connection
- Startup
- Maintenance
- Servicing

The following information and documents must be observed during these processes:

- · Relevant operating instructions and wiring diagrams
- · Warning and safety signs on the gear unit
- System-specific regulations and requirements
- National / regional regulations governing safety and the prevention of accidents

Serious injuries and property damage may result from:

- · Improper use
- Incorrect installation or operation
- · Unauthorized removal of necessary protection covers or the housing

Safety Notes Personal protective equipment

Transportation

Inspect the shipment for any damage in transit as soon as you receive the delivery. Inform the shipping company immediately. It may be necessary to preclude startup.

Startup / operation

Check that the direction of rotation is correct in decoupled status. Listen out for unusual grinding noises as the shaft rotates

Secure the key for test mode without output elements. Do not deactivate monitoring and protection equipment even for testing.

Switch off the main motor if in doubt whenever changes occur in relation to normal operation (e.g. increased temperature, noise, vibration). Determine the cause and contact SEW-EURODRIVE, if required.

Inspection / maintenance

Refer to the instructions in Sec. "Inspection and Maintenance."

2.3 Personal protective equipment

Always wear the following when carrying out work on the gear unit:

- Tight-fitting clothing (not prone to tear, no loose sleeves, no rings, etc.).
- Safety glasses for protecting the eyes from falling objects and liquids.
- Safety shoes for protection against heavy falling objects and slipping on a slippery floor.
- Hearing protection for protection against hearing damage for sound pressure levels exceeding 80 dB (A).

2.4 Transport of industrial gear units

Transport eyebolts

Tighten screwed in transport eyebolts [1] firmly. They are only designed for the weight of the industrial gear unit including the motor connected via motor adapter; do not attach any additional loads.

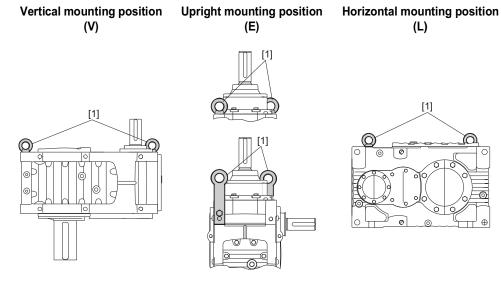


Figure 1: Positions of transport eyebolts

51375AXX

- The main gear unit must only be lifted using lifting ropes or chains on the two screwed in transport eyebolts on the main gear unit. The weight of the gear unit is indicated on the nameplate or the dimension sheet. The loads and regulations specified on the nameplate must always be observed.
- The length of the lifting chains or ropes must be dimensioned in such a way that the angle between the chains or ropes does not exceed 45°.
- Eyebolts on the motor, auxiliary gear unit or primary gear unit must not be used for transport (→ following figures)!

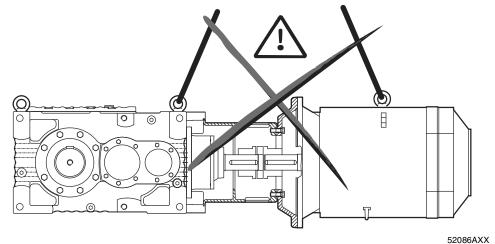


Figure 2: Do not use eyebolts on the motor for transport

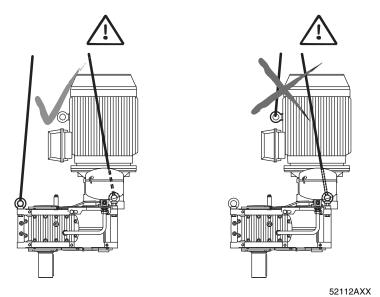


Figure 3: Do not use eyebolts on the motor for transport

• Use suitable, sufficiently rated handling equipment if necessary. Before startup, remove securing devices used for transport.

Transport of MC.. industrial gear units with motor adapter

Industrial gear units of the MC.P.. / MC.R.. series with motor adapter (\rightarrow following figure) must only be transported using lifting ropes/chains [2] or lifting belts [1] at an angle of 90° (vertically) to 70°.

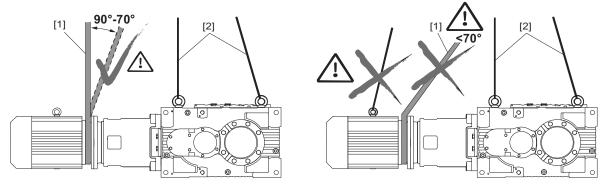


Figure 4: Transport of industrial gear unit with motor adapter – Do not use eyebolts on the motor for transport

Safety Notes Transport of industrial gear units

Transport of MC.. industrial gear units on a base plate

Industrial gear units of the **MC** series **on a base plate** (\rightarrow following figure) must **only** be transported with the **lifting ropes** [1] or chains (angle 90°) **vertically** to the base plate:

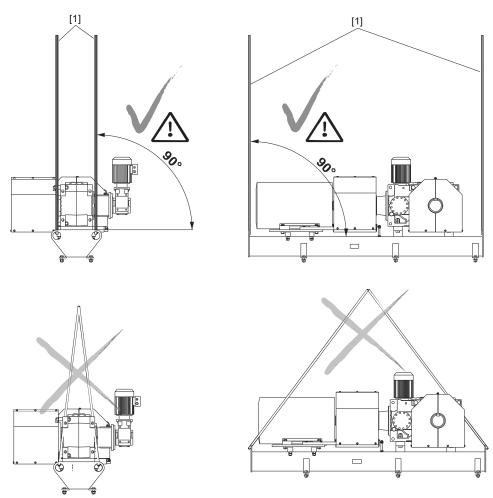


Figure 5: Transport of MC.. industrial gears unit on a base plate

51376AXX

Transport of MC.. industrial gear units on a swing base

Industrial gear units of the MC series on a swing base (\rightarrow following figures) must only be transported using lifting belts [1] and lifting ropes [2] at an angle of 90° (vertically) to 70°.

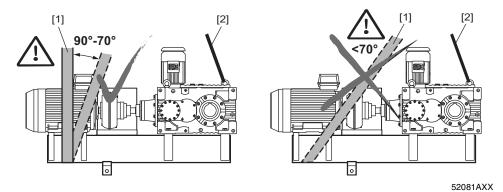


Figure 6: Transport of MC.. industrial gear unit on a swing base

Safety Notes Transport of industrial gear units

Transport of MC.. industrial gear units with V-belt drive

Industrial gear units of the MC series with V-belt drive must only be transported using lifting belts [1] and lifting ropes [2] at an angle of 90° (vertically). The eyebolts on the motor must not be used for transport.

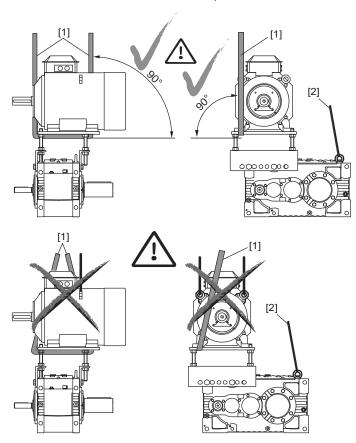


Figure 7: Transport of MC.. with V-belt drive

2.5 Corrosion and surface protection

The information in this chapter is valid for MC units assembled in Europe. For other regions, other painting systems might be applied. Please contact your local SEW-EURO-DRIVE assembly center for MC.. units.

Introduction

The corrosion and surface protection of gear units comprises the following three basic features:

- 1. Painting system
 - Standard painting system K7 E160/2
 - High-resistant painting system K7 E260/3 as option
- 2. Gear unit corrosion protection with
 - · interior protection and
 - · exterior protection
- 3. Gear unit packing
 - Standard packing (palette)
 - Wooden box
 - · Seaworthy packing

Standard painting system K7 E 160/2

Painting is performed according to TEKNOS EPOXY SYSTEM K7, which is based on the high-solid epoxy paint TEKNOPLAST HS 150.

Two layer system K7 E 160/2	Thickness
Epoxy primer	60 µm
Teknoplast HS 150	100 μm
TOTAL	160 μm

Color shade: RAL 7031, blue gray

Guards and shields

Powder coating, epoxy-based coat paint (EP) is used for guards and shields.

Layer thickness 65 µm

Color shade: TM 1310 PK, warning in yellow color

High-resistant painting system K7 E 260/3

Painting is performed according to TEKNOS EPOXY SYSTEM K7, which is based on the high-solid epoxy paint TEKNOPLAST HS 150.

Three-layer system, E 260/3	thickness
Epoxy primer	60 μm
Teknoplast HS 150	2x100 μm
TOTAL	260 μm

Optional color shade

Other color shades are possible on request.

Usage of painting system

Environmental pollution	None	Low	Medium	High	Very high
Typical environ- mental conditions		Unheated build- ings where con- densation might occur Atmospheres with low pollution, mostly rural areas	Production rooms with high level of moistureand low air pollution City and industrial atmospheres, moderate pollution with sulphur diox- ide, coastal areas with low salt load	Industrial areas and costal areas with moderate salt load Chemical plants	Buildings or areas with almost per- manent condensa- tion and high pollution Industrial areas with very high lev- els of moisture and aggressive atmospheres
Mounting	Indoors	Indoors	Indoors or outdoors	Indoors or outdoors	Indoors or outdoors
Relative humidity	< 90 %	up to 95 %	up to 100 %	up to 100 %	up to 100 %
Recommended painting system	Standard painting system K7 E160/2	Standard painting system K7 E160/2	Standard painting system K7 E160/2	High resistant paint- ing system K7 E260/3	Contact SEW-EURODRIVE

Storage and transport conditions

Industrial gear units of the MC.. series are delivered without oil fill. Different protection systems are required depending on storage period and ambient conditions:

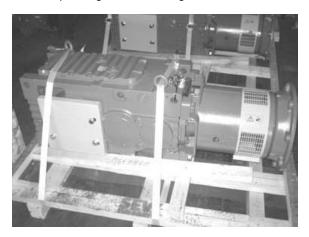
Storage		Storage conditions Gear unit corrosion protection					
period: up to months	OUTDOORS, roofed	INDOORS, heated (0+20°C)	Storage area close to sea OUT- DOORS, roofed	Storage area close to sea INDOORS	Land transport	Sea transport	
6	Standard protection	Standard protection	Contact SEW-EURODRIVE	Long-term protection	Standard packing	Seaworthy packing	
12	Contact SEW-EURODRIVE	Standard protection	Contact SEW-EURODRIVE	Long-term protection	Standard packing	Seaworthy packing	
24	Long-term protection	Contact SEW-EURODRIVE	Contact SEW-EURODRIVE	Long-term protection	Standard packing	Seaworthy packing	
36	Contact SEW-EURODRIVE	Long-term protection	Contact SEW-EURODRIVE	Long-term protection	Standard packing	Seaworthy packing	

Standard protection / interior

• Gear units undergo a test run with oil. The oil is drained by SEW-EURODRIVE before dispatch. The remaining layer of oil on the inner parts serves as basic protection.

Standard protection / exterior

- Oil seals and seal surfaces are protected by suitable grease.
- Unpainted surfaces (including spare parts) are covered with a protective coating.
 Before other equipment is mounted to such surfaces, the protective coating must be removed using a solvent.
- Small spare parts and loose pieces, such as screws, nuts, etc., are supplied in corrosion protected plastic bags (VCI corrosion protection bag).
- Threaded holes and blind holes are covered by plastic plugs.
- The breather plug (position \rightarrow chapter "Mounting Positions") is already installed.

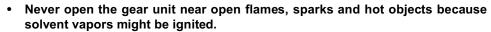


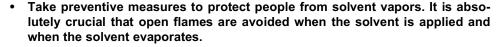
Standard protection / packing

Standard packing is used: The gear unit is delivered on a palette without cover

55871AXX

Figure 8: Standard protection / packing




- If the gear unit is stored longer than 6 months, it is recommended to regularly check the protective coating of unpainted areas as well as the paint coat. Areas with removed protection coating or paint have to be repainted, if necessary.
- The LSS must be rotated at least one turn in such a way that the position of the roller elements in the bearings of LSS and HSS changes. This procedure has to be repeated every 6 months until startup.

Long-term protection / interior

The following procedure is applied in addition to the "standard protection":

- · A VPI solvent is sprayed through the oil filling hole
- The breather plug is replaced with a screw plug (before startup, the screw plug must be replaced again by the breather plug, which is attached to the gear unit separately)

Long-term protection / exterior

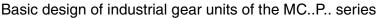
- · Oil seals and seal surfaces are protected through suitable grease
- Unpainted surfaces (including spare parts) are covered with a protective coating.
 Before other equipment is mounted to such surfaces, the protective coating must be removed using a solvent.
- Small spare parts and loose pieces, such as screws, nuts, etc., are supplied in corrosion protected plastic bags (VCI corrosion protection bag).
- · Threaded holes and blind holes are covered by plastic plugs
- The breather plug (Position → chapter "Mounting Positions") is already installed.

Long-term protection / packing

 Seaworthy packing is used: The gear unit is packed in a seaworthy plywood box with a wooden frame

Figure 9: Long-term protection / packing

57585AXX


- If the gear unit is stored for longer than 6 months, it is recommended to regularly check the protective coating of unpainted areas as well as the paint coat. Areas with removed protection coating or paint have to be repainted, if necessary.
- The LSS must be rotated at least one turn in such a way that the position of the roller elements in the bearings of LSS and HSS changes. This procedure must be repeated every 6 months until startup.
- The interior long-term protection with the VPI solvent has to be repeated every 24 / 36 months (according to the table "Storage and transport conditions") until startup.

Alternative packing

Optionally, the gear unit can be supplied in a wooden box with standard gear unit protection.

3 Gear Unit Design

The following illustrations serve to explain the general design. Their only purpose is to facilitate the assignment of components to the spare parts lists. Discrepancies are possible depending on gear unit size and version!

3.1 Basic design of industrial gear units of the MC..P.. series

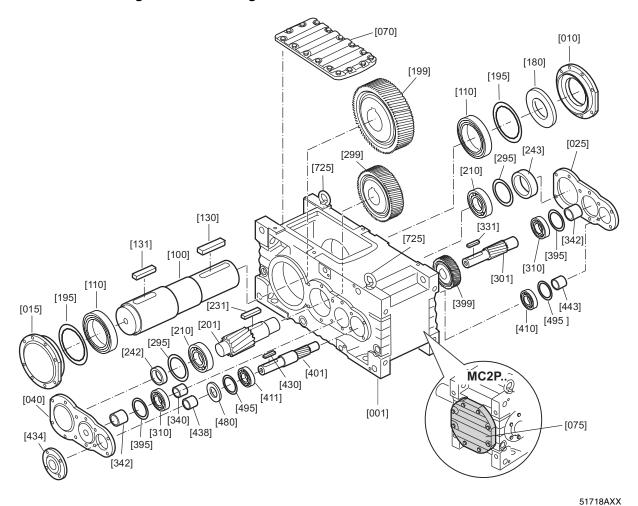


Figure 10: Basic design of industrial gear units of the MC..P.. series

[001] Gear unit housing [131] Key [299] Gear wheel [410] Bearing [180] Oil seal [301] Pinion shaft [411] Bearing [010] Bearing cover [015] Bearing cover [195] Shim [310] Bearing [430] Key [434] Cover [025] Bearing cover [199] Output gear wheel [331] Key [040] Bearing cover [201] Pinion shaft [340] Distance bushing [438] Bushing [070] Housing cover [210] Bearing [342] Distance bushing [443] Distance bushing [075] Assembly cover [231] Key [395] Shim [480] Oil seal [100] Output shaft [242] Distance piece [399] Gear wheel [495] Shim [110] Bearing [243] Distance piece [401] Input shaft [725] Lifting eyebolt [130] Key [295] Shim

3.2 Basic design of industrial gear units of the MC..R.. series

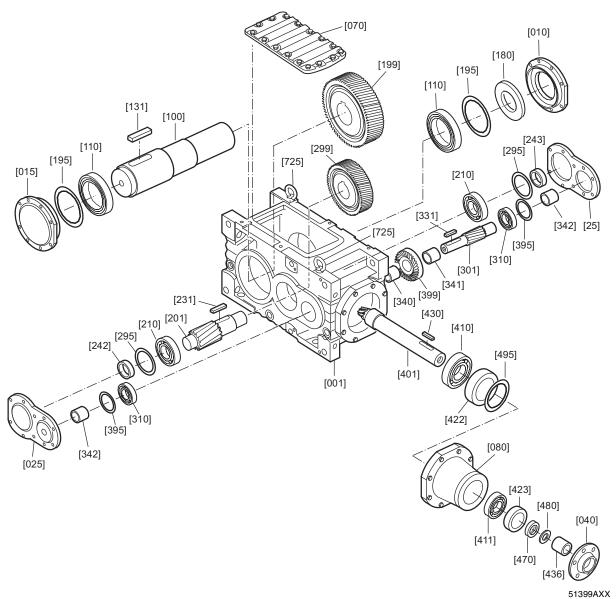
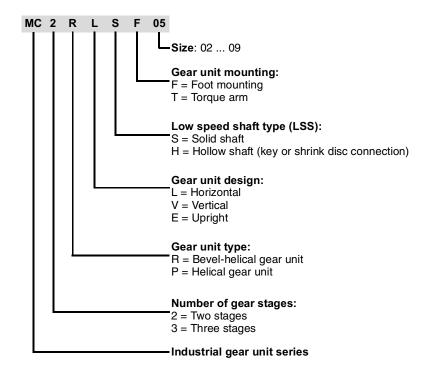


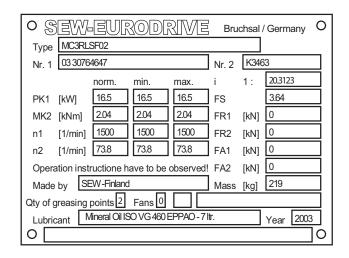
Figure 11: Basic design of industrial gear units of the MC..R.. series

[001] Gear unit housing	[131] Key	[299] Gear wheel	[410] Bearing
[010] Bearing cover	[180] Oil seal	[301] Pinion	[411] Bearing
[015] Bearing cover	[195] Shim	[310] Bearing	[422] Bearing bushing
[025] Bearing cover	[199] Output gear wheel	[331] Key	[423] Bearing bushing
[040] Cover	[201] Pinion shaft	[340] Distance bushing	[430] Key
[070] Housing cover	[210] Bearing	[341] Distance bushing	[436] Sleeve
[080] Bearing cover	[231] Key	[342] Distance bushing	[470] Tightening nut
[100] Output shaft	[242]Distance bushing	[395] Shim	[480] Oil seal
[110] Bearing	[243] Distance bushing	[399] Bevel gear	[495] Shim
[130] Key	[295] Shim	[401] Bevel pinion shaft	[725] Lifting eyebolt



3.3 Unit designation / nameplates

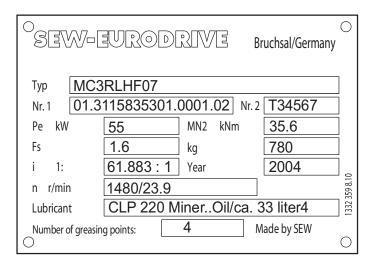
Sample unit designation



Gear Unit DesignUnit designation / nameplates

Example: Nameplate of the MC.. series industrial gear unit, SEW-EURODRIVE

Тур			Unit designation
Nr. 1			Serial number 1: Eurodrive order number (e.g. SAP-order number)
Nr. 2			Serial Number 2: (factory / assembly center manufacturing number)
	norm.		Running power on gear unit input @ n ₁ norm.
P _{K1}	min.	[kW]	Running power on gear unit output @ n ₁ min.
	max		Running power on gear unit output @ n ₁ max.
	norm.		Running torque on gear unit output @ n ₁ norm.
M _{K2}	min.	[kNm]	Running torque on gear unit output @ n ₁ min.
	max		Running torque on gear unit output @ n ₁ max.
	norm.		Input speed (HSS)
n ₁	min.	[1/min]	Minimum existing input speed (HSS)
	max		Maximum existing input speed (HSS)
	norm.		Output speed (LSS)
n_2	min.	[1/min]	Minimum existing output speed (LSS)
	max		Maximum existing output speed (LSS)
Made by			Location of gear unit assembly / manufacturing
norm.			normal operation point
min.			minimum operation point
max.			maximum operation point
i			Exact gear unit reduction ratio
F_S			Service factor
F _{R1}		[kN]	Existing radial load on HSS
F _{R2}		[kN]	Existing radial load on LSS
F _{A1}		[kN]	Existing axial load on HSS
F _{A2}		[kN]	Existing axial load on LSS
Mass		[kg]	Gear unit weight

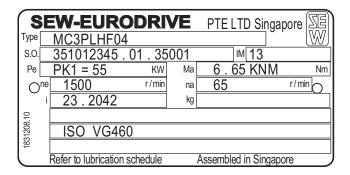

Gear Unit Design Unit designation / nameplates

Qty of greasing points:	Number of points that require regreasing (e.g. in case of regreasable labyrinth seals or drywell sealing system)
Fans	Number of cooling fans mounted on gear unit
Lubricant	Oil grade and viscosity class / oil volume
Year	Year of assembly
IM Mounting Position: Housing orientation and mounting surface	
TU	Temperature permitted range of ambient

Example: Nameplate of the MC.. series industrial gear unit, SEW-EURODRIVE

Тур		Unit designation
Nr. 1		Serial number 1
Nr. 2		Serial number 2
P _e	[kW]	Absorbed power on the input shaft
F _S		Service factor
n	[r/min]	Input/output speed
kg		Weight
i		Exact gear unit reduction ratio
Lubricant		Oil grade and viscosity class / oil volume
M _{N2}	[kNm]	Rated torque of the gear unit
Year		Year of manufacture
Number of greasing points		Number of points that require regreasing

Gear Unit DesignUnit designation / nameplates


Example: Nameplate of the MC series industrial gear unit, SEW-EURODRIVE China

S	EW-EUROD	RI	VΕ			ZZ
Type	MC3PLHF04					
S.O.	351012345 . 01	. 35	001		м 13	
Pe	PK1 = 55	KW	Ma	6.6	5 KNM	Nm
	ne 1500	r/min	na	65		r/min
	23 . 2042		kg			
19						
1831208.10	ISO VG460					
8						
	Refer to lubrication sche	edule				

51965AXX

Туре		Unit designation
IM		Shaft position
P _e	[kW]	Absorbed power on the intput shaft
M _a	[Nm]	Output torque on the output shaft
n _e	[r/min]	Input speed
n _a	[r/min]	Output speed
i		Exact gear unit reduction ratio
S.O.		Order number

Example: Nameplate of the MC series industrial gear unit, SEW-EURODRIVE Singapore

Туре		Unit designation
IM		Shaft position
P _e	[kW]	Absorbed power on the intput shaft
M _a	[Nm]	Output torque on the output shaft
n _e	[r/min]	Input speed
n _a	[r/min]	Output speed
i		Exact gear unit reduction ratio
S.O.		Order number

Gear Unit Design Unit designation / nameplates

Example: Nameplate of the MC series industrial gear unit, SEW-EURODRIVE Brazil

Туро		Unit designation
No		Order number
P _e	[kW]	Absorbed power on the input shaft
Ma	[Nm]	Output torque on the output shaft
n _e	[rpm]	Input speed
n _a	[rpm]	Output speed
i		Exact gear unit reduction ratio
IM		Shaft position
f _S		Service factor

Gear Unit DesignUnit designation / nameplates

Example: Nameplate of the MC series industrial gear unit, SEW-EURODRIVE USA

Туре		Unit designation
In	[rpm]	Input speed
Out	[rpm]	Output speed
HP	[HP]	Absorbed power on the output shaft
Torque	[lb-in]	Output torque
Ratio		Exact gear unit reduction ratio
Service Factor		Service factor
Shaft Position		Shaft position
Min Amb	[°C]	Minimum ambient temperature
Max Amb	[°C]	Maximum ambient temperature
Lubrication		Oil grade and volume
S.O.		Shop order number

Gear Unit Design Unit designation / nameplates

Example: Nameplate of the MC series industrial gear unit, SEW-EURODRIVE Chile

Tipo		Unit designation
No		Serial number 1
F.C.		Shaft position
P _e	[kW]	Input power
n _e		Input speed
i		Exact gear unit reduction ratio
f.s.		Service factor
Identif.		Grease type
Tipo Lubr.		Oil grade and viscosity class
Cant Lubt.		Oil quantity
Ма	[Nm]	Gear unit nominal torque
na	[rpm]	Output speed
Ø a	[mm]	LSS shaft diameter
Peso	[Kg]	Weight of gear unit

3.4 Mounting positions

The following features clearly define the mounting position and corresponding design of MC units:

- Mounting surface (F1...F6) → chapter 3.5
- Housing orientation (M1...M6) → chapter 3.6
 In addition, the shaft positions (0...4) have to be defined → chapter 3.7
 The gear designs "horizontal LSS (L)", "vertical LSS (V)", "upright mounting (E)" are associated with the housing orientation

3.5 Mounting surface

Definition

The mounting surface is defined as the surface(s) of the foot or flange mounted gear unit to which the customer's machine is mounted.

Designations

Six different mountings surfaces have been defined (designations "F1" to "F6"):

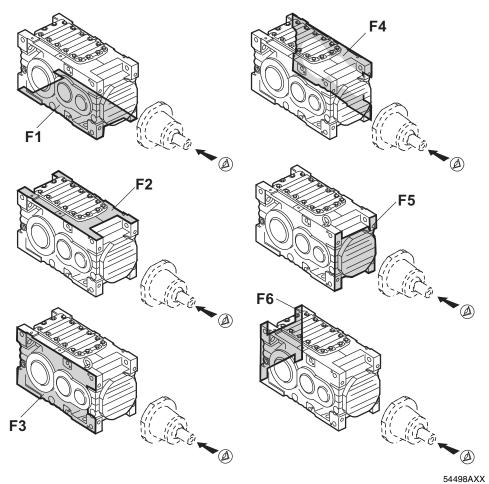


Figure 12: Mounting surface

3.6 Housing orientation M1...M6

The housing orientation is defined as the position of the housing in space and is defined using the designations M1....M6.

Each housing orientation corresponds to a certain

- gear unit design (L, V, E)
- standard mounting surface (F1...F6)

The housing orientation is defined separately for

- . MC.P.. helical units
- . MC.R.. bevel-helical units

Unless specified otherwise, the standard correlation of

- · gear unit design and
- · housing orientation and
- mounting surface

is as follows (foot mounted gear units):

Standard correlation of gear unit design and housing orientation

MC..PL: M1, F1

MC..PV: M5, F3

MC..**PE**: M4, F6

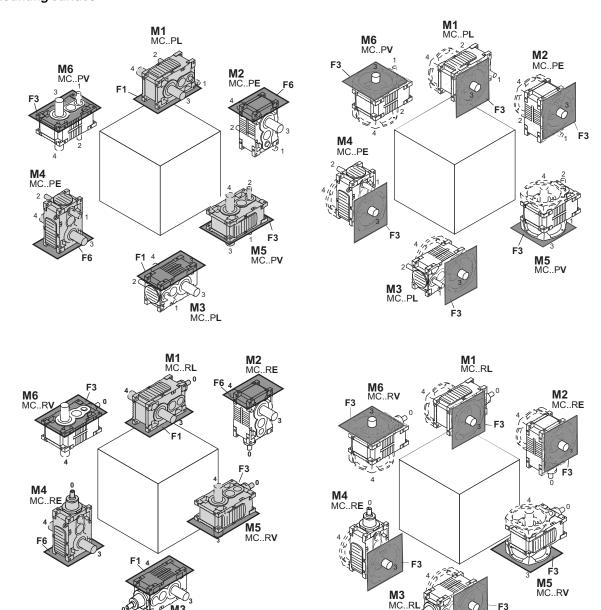
MC..RL: M1, F1

MC..RV: M5, F3

MC..RE: M4, F6

For gear units with mounting flange on the LSS, the standard position of the flange depends on the shaft position of the LSS unless specified otherwise:

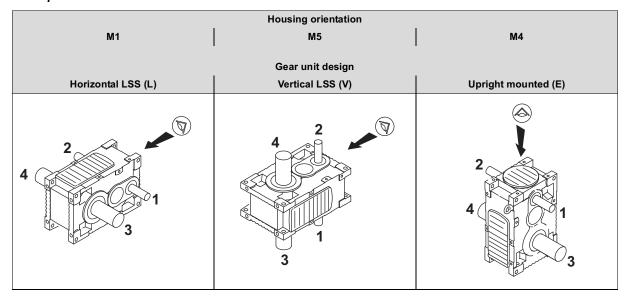
- Shaft position 3 → LSS mounting flange F3
- Shaft position 4 → LSS mounting flange F4

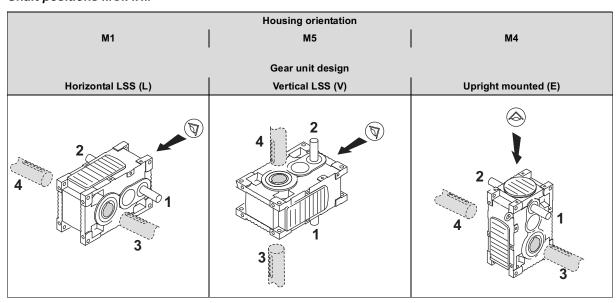


Housing orientation and standard mounting surface

- The units marked in gray are standard design.
- Other mounting surfaces are possible in conjunction with a certain housing orientation. Please refer to order-specific dimension drawing.

It is not allowed to change the housing orientation and/or mounting surface deviating from the order.


3.7 Shaft positions


The shaft positions (0, 1, 2, 3, 4) and directions of rotation shown in the following figures apply to output shafts (LSS) of the types **solid shaft and hollow shaft**. For other shaft positions or gear units with backstop, contact SEW-EURODRIVE.

The following shaft positions (0, 1, 2, 3, 4) are possible:

Shaft positions MC.P.S..

Shaft positions MC.P.H..

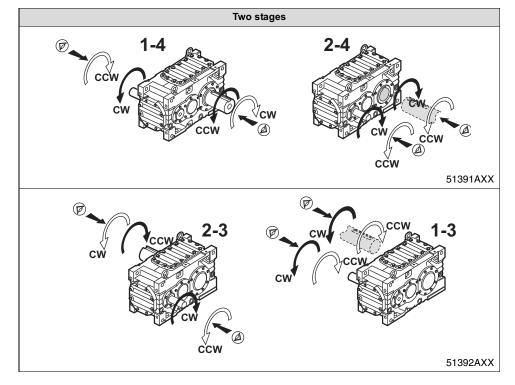
Shaft positions MC.R.S..

Housing orientation								
M1	М5	M4						
	Gear unit design							
Horizontal LSS (L)	Vertical LSS (V)	Upright mounted (E)						
4 0 0 0	3	4						

Shaft positions MC.R.H..

	Housing orientation			
M1	М5	M4		
	Gear unit design			
Horizontal LSS (L)	Vertical LSS (V)	Upright mounted (E)		
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3			

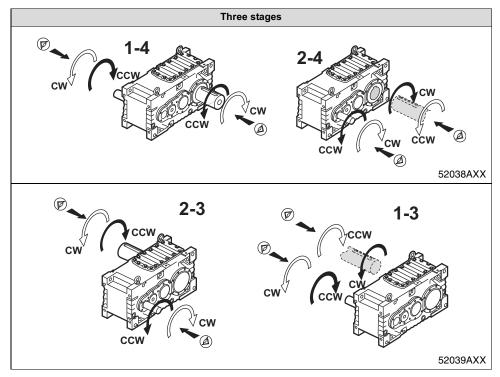
3.8 Direction of rotation

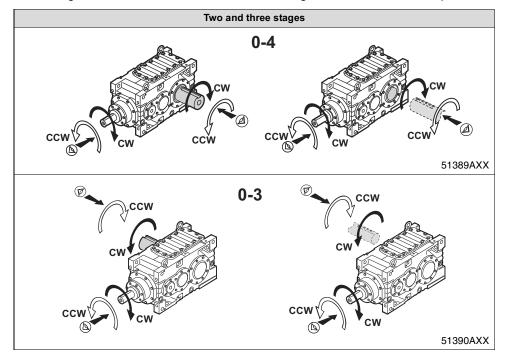

Directions of rotation

The directions of rotation of the outputs shaft (LSS) are defined as follows:

Direction	Gear	unit version				
of rotation	MC.P.S MC.R.S	MC.P.H MC.R.H				
Clockwise (CW)	52036AXX	51383AXX				
Counter- clockwise (CCW)	52037AXX	51386AXX				

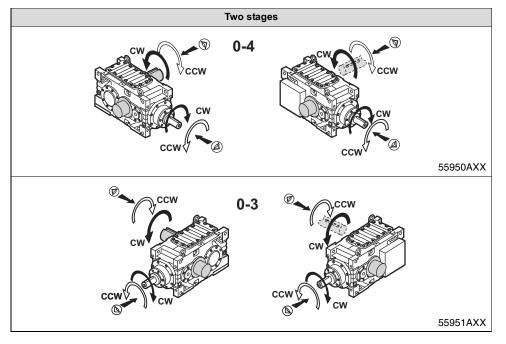
Shaft positions and corresponding directions of rotation of MC2P..


The following figures show shaft positions and corresponding directions of rotation for industrial gear units of the MC2P.. series.



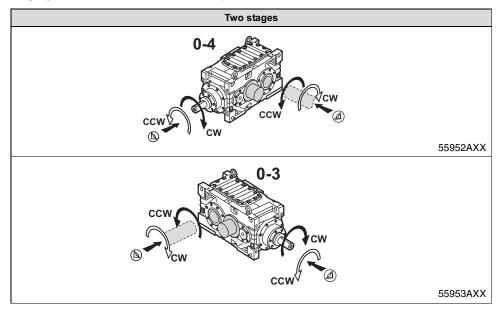
Shaft positions and corresponding directions of rotation of MC3P.. The following figures show shaft positions and corresponding directions of rotation for industrial gear units of the MC3P.. series.

Shaft positions and corresponding directions of rotation of MC.R.. without backstop The following figures show shaft positions and corresponding directions of rotation for industrial gear units of the MC.R.. two and three stage series without backstop.



Shaft positions and corresponding directions of rotation of MC2RS../ MC2RH.. keyway with backstop

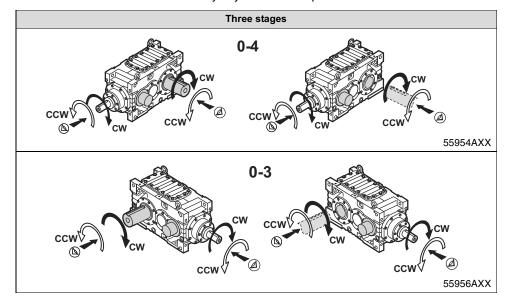
The following figures show shaft positions and corresponding directions of rotation for two-stage gear units with backstop of the types MC.RS.. and MC.RH.. with keyway.

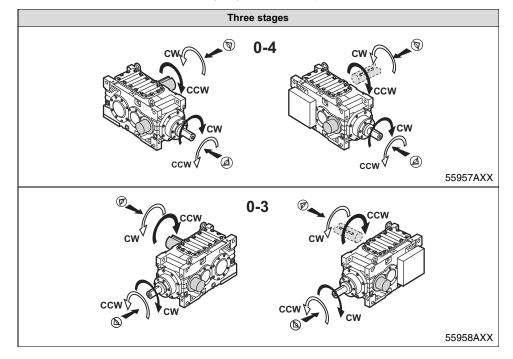


Only one direction of rotation is possible, which has to be defined in the order. The permitted direction of rotation is indicated on the housing.

Shaft positions and corresponding directions of rotation of MC2RH.. /SD shrink disc units with backstop

Below figures show shaft positions and corresponding directions of rotation for twostage gear units with backstop of the type MC.RS.. with shrink disc.


Only one direction of rotation is possible, which has to be specified in the order. The permitted direction of rotation is indicated on the housing.


Shaft positions and corresponding directions of rotation of MC3R.. industrial gear units backstop on driven machine end The following figures show shaft positions and corresponding directions of rotation for MC.RS.. and MC.RH.. units with keyway and backstop.

Only one direction of rotation is possible, which has to be specified in the order. The permitted direction of rotation is indicated on the housing.

Shaft positions and corresponding directions of rotation of MC3R.. Backstop opposite to driven machine end The following figures show shaft positions and corresponding directions of rotation for MC.RS.. and MC.RH.. units with keyway and backstop.

Only one direction of rotation is possible, which has to be specified in the order. The permitted direction of rotation is indicated on the housing.

Gear Unit Design Lubrication of industrial gear units

3.9 Lubrication of industrial gear units

Depending on the mounting position, the lubrication types "splash lubrication" or "bath lubrication" are used for industrial gear units of the MC.. series.

Splash lubrication

Splash lubrication is used for industrial gear units of the MC.. series in horizontal mounting position (unit designation MC..L..). With splash lubrication, the oil level is low. With this lubrication method, oil is splashed onto the bearings and gearing components.

Oil bath lubrication Oil bath lubrication is used for industrial gear units of the MC.. series in horizontal mounting position (unit designation MC..V..) and upright mounting position (unit designation MC..E..) With oil bath lubrication, the oil level is so high that the bearings and gearing components are completely submerged in the lubricant.

Oil expansion tanks are always used for industrial gear units of the MC.PV.., MC.RV.. and MC.RE.. series with oil bath lubrication. Oil expansion tanks allow the lubricant to expand when the gear unit heats up during operation.

Disregarding the mounting position, a steel oil expansion tank is used when the unit is installed outdoors and when the ambient conditions are very humid. This tank can be used both for the version with solid shaft and hollow shaft. A membrane in the oil expansion tank separates the oil in the gear unit from the humid ambient air and thus ensures that no humidity can build up in the gear unit.

Symbols used

The following table shows which symbols are used in the subsequent figures and what they mean.

Symbol	Meaning
	Breather plug
	Inspection opening
	Oil dipstick
	Oil drain plug
	Oil filling plug
	Oil sight glass
	Air outlet screw

Gear Unit DesignLubrication of industrial gear units

Oil bath lubrication upright mounting position The steel oil expansion tank [6] is used for industrial gear units of the MC series in upright mounting position (unit designation MC.PE.. or MC..RE..).

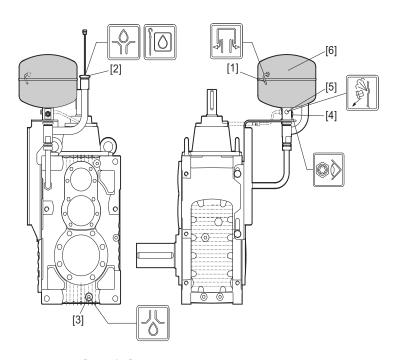
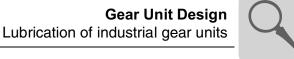


Figure 13: MC.PE../MC.RE.. industrial gear units with steel oil expansion tank


51586AXX

[1] Breather [4] Oil sight glass

[2] Oil dipstick [5] Air outlet screw

[3] Oil drain plug [6] Steel oil expansion tank

Oil bath lubrication vertical mounting position

The steel oil expansion tank [6] for industrial gear units of the MC series in vertical mounting position (unit designation MC.PV.. / MC.RV..) is located on the side of the assembly cover.

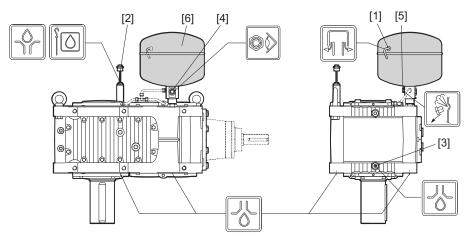
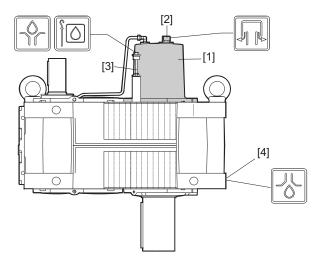


Figure 14: MC.PV../MC.RV.. industrial gear unit with steel oil expansion tank

51588AXX

[1] Breather

[4] Oil sight glass


[2] Oil dipstick

[5] Air outlet screw

[3] Oil drain plug

[6] Steel oil expansion tank

In dry environmental conditions, a cast iron oil expansion tank [1] is used. This oil expansion tank is only used for the vertical mounting position with the solid output shaft pointing downwards (unit designation MC.PVSF.. or MC.RVSF..).

51589AXX

Figure 15: MC.PVSF../MC.RVSF.. industrial gear unit with cast iron oil expansion tank

[1] Cast iron oil expansion tank

[3] Oil dipstick

[2] Breather plug

[4] Oil drain plug

Gear Unit DesignLubrication of industrial gear units

Pressure lubrication

If requested, pressure lubrication is possible as lubrication method **disregarding the mounting position**.

With pressure lubrication, the oil level is low. For sizes 04 to 09, the gearing components and bearings not submerged in the oil bath are lubricated through a shaft end pump (\rightarrow Sec. "Shaft end pump"), or, with sizes 02 to 09, through a motor pump (" Sec. \rightarrow Motor pump").

The lubrication method "pressure lubrication" is used when

- oil bath lubrication is not desired for upright or vertical mounting positions
- input speeds are very high
- the gear unit must be cooled by an external oil/water (→ Sec. "Oil/water cooling system") or oil/air cooling system (→ Sec. "Oil/air cooling system")

For more details on oil expansion tanks, refer to Sec. "Mounting Positions".

4 Mechanical Installation

4.1 Required tools / resources

Not included in the scope of delivery:

- Wrench set
- Torque wrench (for shrink discs)
- Motor attachment to motor adapter
- Mounting device
- · Shims and spacing rings if necessary
- Fasteners for input and output elements
- Lubricant (e.g. NOCO[®] fluid from SEW-EURODRIVE)
- For hollow shaft gear units (→ Sec. "Mounting/removal of hollow shaft gear units with keyed connection): Threaded rod, nut (DIN 934), retaining screw, ejector screw
- Securing components according to Sec. "Gear unit foundation"

Installation tolerances

Shaft end	Flanges
 Diametric tolerance in accordance with DIN 748 ISO k6 for solid shafts with Ø ≤ 50 mm ISO m6 for solid shafts with Ø > 50 mm ISO H7 for hollow shafts for shrink disc ISO H8 for hollow shafts with keyway Center hole in accordance with DIN 332, shape DS 	Centering shoulder tolerance: • ISO js7 / H8

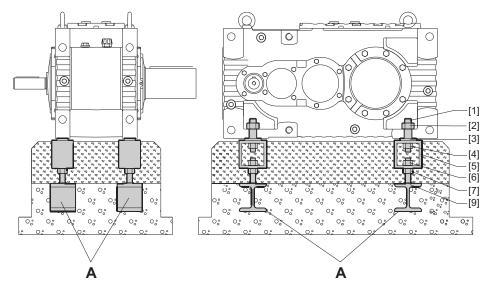
4.2 Before you begin

The drive may only be installed

- the data on the nameplate of the motor match the supply voltage
- the drive is not damaged (no damage resulting from transport or storage) and
- the following requirements have been properly met:
 - with standard gear units:
 ambient temperature according to the lubricant table in Sec. "Lubricants" (see standard), no oil, acid, gas, vapors, radiation, etc.
 - with special versions:
 drive configured in accordance with the ambient conditions (→ order documents)

4.3 Preliminary work

Output shafts and flange surfaces must be completely free of anti-corrosion agents, contamination or other impurities (use a commercially available solvent). Do not let the solvent get in contact with the sealing lips of the oil seals:danger of damage to the material!


4.4 Gear unit foundation

Foundation for foot-mounted gear units To ensure quick and successful mounting, the type of foundation should be correctly selected and the mounting carefully planned in advance. Foundation drawings with all necessary construction and dimension details should be available.

SEW-EURODRIVE recommends foundation methods shown in the following figures. A customer's own foundation method must be equally adequate.

When mounting a gear unit onto steel framework, special attention should be paid to the rigidity of this framework to prevent destructive vibrations and oscillations. The foundation must be dimensioned according to weight and torque of the gear unit by taking into account the forces acting on the gear unit.

Example 1

51403AXX

Figure 16: Reinforced concrete foundation for MC.PL.. / MC.RL.. industrial gear units

Pos. "A" \rightarrow Sec. "Concrete base"

- [1] Hex head screw or stud
- [2] Hex nut if [1] is a stud or an upside-down screw
- [3] Shims (about 3 mm space for shims)
- [4] Hex nut
- [5] Foundation bracket
- [6] Hex nut
- [7] Hex nut and foundation screw
- [9] Supporting girder

Mechanical Installation Gear unit foundation

Example 2

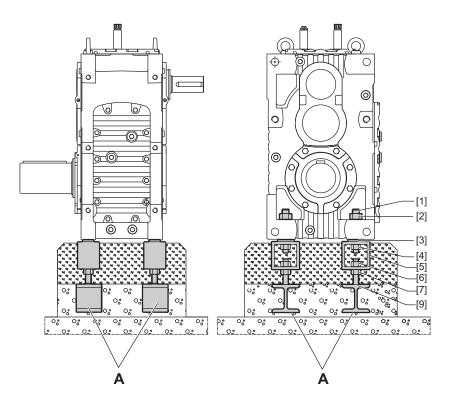
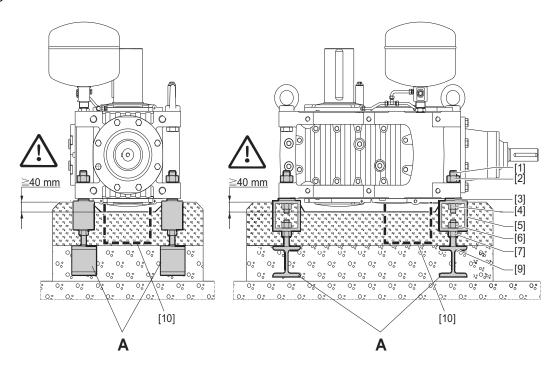


Figure 17: Reinforced concrete foundation for MC.PE.. / MC.RE.. industrial gear units


51406AXX

Pos. "A" \rightarrow Sec. "Concrete base"

- [1] Hex head screw or stud
- [2] Hex nut if [1] is a stud or an upside-down screw
- [3] Shims (about 3 mm space for shims)
- [4] Hex nut
- [5] Foundation bracket
- [6] Hex nut
- [7] Hex nut and foundation screw
- [9] Supporting girder

Example 3

51413AXX

Figure 18: Reinforced concrete foundation for MC.PV.. / MC.RV.. industrial gear units

Pos. "A" \rightarrow Sec. "Concrete base"

- [1] Hex head screw or stud
- [2] Hex nut if [1] is a stud or an upside-down screw
- [3] Shims (about 3 mm space for shims)
- [4] Hex nut
- [5] Foundation bracket
- [6] Hex nut
- [7] Hex nut and foundation screw
- [9] Supporting girder
- [10] Shaft end pump (optional)

Important for MC.PV.. / MC.RV.. gear unit types:

- The mounting clearance between bearing cover and gear unit foundation must be at least 40 mm.
- The mounting clearance must be dimensioned adequately if the gear unit is equipped with a shaft end pump [10] (\rightarrow Sec. "Shaft end pump")

Mechanical Installation Gear unit foundation

Concrete base

The concrete base for the gear unit must be reinforced and interlocked with the concrete using steel clamps, steel rods or steel elements. Only the supporting girders are embedded in the concrete (Pos. "A" \rightarrow following figure).

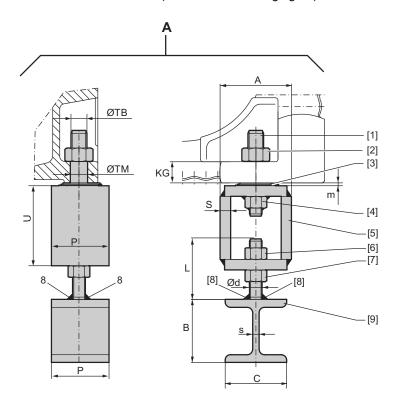


Figure 19: Reinforcing the concrete base (Pos. "A")

- [1] Hex head screw or stud
- [2] Hex nut if [1] is a stud or an upside-down screw
- [3] Shims (about 3 mm space for shims)
- [4] Hex nut
- [5] Foundation bracket
- [6] Hex nut
- [7] Hex nut and foundation screw
- [8] Weld seam
- [9] Supporting girder

Mechanical InstallationGear unit foundation

Dimensions

Gearunit		Stud			Foundation frame				Foundation screws		Supporting girders			
size	ØTB	ØTM	KG	m	Р	U	Α	S	Ød	L	Р	В	С	s
		[mm]												
02	M20	24	28											
03	IVIZO	24	2	100	120	20 20	20	M24	120		100		10	
04	M24	28	34			120		20	IVIZT	120		100		10
05	IVIZT	20	5	Q	3 120 120		120				120			
06	M30	33	40	0	120		120				120			
07	IVISO	33	7			150	150 30	30	M30	150		140		12
08	M36	39	52			130		30	IVIOU	130		140	,	12
09	IVISO	39	52											

The minimum tensile strength of the supporting girders and foundation screws must be at least 350 N/mm².

Grouting

The density of the grout must be equal to that of the base concrete. The grout is connected with the concrete base using concrete reinforcement steel.

Before welding the weld seams [9], ensure that

- · the concrete base around the supporting girder has dried
- the gear unit with all mount-on components has been aligned to its final position

Tightening torques

Screw / nut	Tightening torque screw / nut [Nm]
M8	19
M10	38
M12	67
M16	160
M20	315
M24	540
M30	1090
M36	1900

Counterflange for flange mounted gear units Gear units can be supplied with a mounting flange on the LSS. Dependent on the bearing configuration, the two flange types are called

- "Mounting flange"
- "EBD-Mounting flange"

Basically, both flange types are possible for all gear unit designs and mounting positions:

- MC.L..
- MC.V..
- MC.E..

Mounting flange

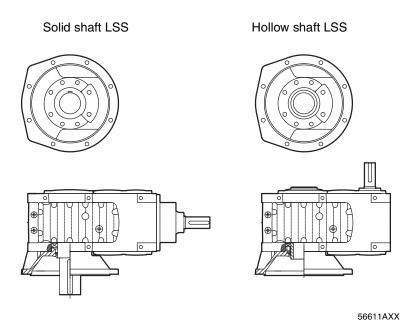


Figure 20: Mounting flange

EBD-Mounting flange

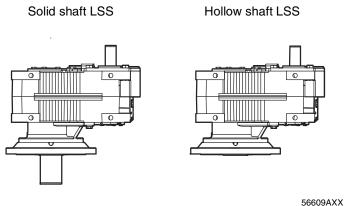


Figure 21: EBD-Mounting flange

Mechanical InstallationGear unit foundation

The counterflange must have following characteristics:

- · Stiff and torsionally rigid, taking into consideration
 - gear unit weight
 - motor weight
 - the torque that has to be transmitted
 - additional forces acting on the gear unit from the customer machine (e.g. axial forces from and towards gear unit from a mixing process)
- Horizontal
- Plain
- Vibration isolating, that means no vibrations are to be transmitted from close-by machines and elements
- Not creating resonance vibrations
- A bore with H7-fitting suiting to the centering shoulder of the gear unit flange according to dimension drawing

The mounting surface of mounting flange and counter flange must be absolutely free of grease or oil and from other contamination (e.g. small textile particles, dust,....)

The alignment of the gear unit LSS in relation to the counterflange has to be as accurate as possible This has an effect on the lifetime of bearing, shafts and coupling.

Allowable misalignments for the coupling on the LSS can be seen in chapter 5.2 or in a separate coupling manual.

Following bolts of the 8.8-class should be used (Tensile strength 640 N/mm²)

Gear unit size	Mounting flange	EPD Mounting flange			
MC	Mounting flange	EBD-Mounting flange			
02	8 x M16	16 x M16			
03	8 x M16	16 x M16			
04	8 x M16	16 x M16			
05	8 x M20	16 x M16			
06	8 x M20	16 x M20			
07	8 x M20	16 x M20			
08	8 x M24	16 x M24			
09	8 x M24	16 x M24			

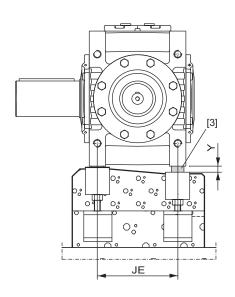
Mechanical InstallationMounting of solid shaft gear units

4.5 Mounting of solid shaft gear units

Before mounting the gear unit, check the foundation dimensions with those in the corresponding drawings in Sec. "Gear unit foundation."

Mount the gear unit in the following order:

- 1. Mount the components according to Sec. "Gear unit foundation". The shims [3] facilitate later adjustment and, if necessary, to mount a replacement gear unit.
- 2. Secure the gear unit at the selected positions on the supporting girders using three foundation screws. Position the foundation screws at maximum possible distance (two screws on one side of the gear unit and one on the other side). Align the gear unit as follows:
 - vertically by lifting, lowering or tilting the unit using the nuts of the foundation screws
 - horizontally by tapping the foundation screws slightly into the required direction
- 3. After having aligned the gear unit, tighten the three nuts of the foundation screws used for alignment. Carefully insert the fourth foundation screw into the supporting girder and tighten it securely. When doing so, make sure that the position of the gear unit does not change. If necessary, realign the gear unit.
- 4. Tack-weld the ends of the foundation screws to the supporting girders (at least three welding spots per foundation screw). Tack-weld the foundation screws alternately in both directions (starting from the middle) on each side of the center line of the gear unit. This way, misalignment caused by the welding process is avoided. After having tack-welded all screws, they must be welded all the way round in the above mentioned order. Adjust the nuts on the foundation screws to ensure that the welded foundation screws do not twist the gear unit housing.
- 5. After having tack-welded the nuts of the retaining screws of the gear unit, check the mounting and carry out grouting.
- 6. When the grouting concrete has set, check the mounting a last time and adjust, if necessary.



Mechanical InstallationMounting of solid shaft gear units

Mounting accuracy when aligning

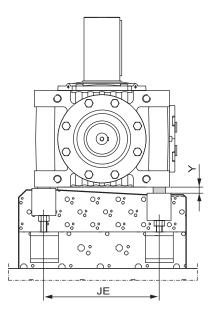


Figure 22: Mounting tolerances of the foundation

51590AXX

When aligning the gear unit, make sure that the mounting tolerances for the evenness of the foundation are not exceeded (values y_{max} in below table). If necessary, use shims [3] to align the gear unit on the foundation plate.

JE [mm]	У _{тах} [mm]		
< 400	0.035		
400 799	0.060		
800 1200	0.090		
1200 1600	0.125		

Flange mounted gear units

Before mounting the gear unit, check if the counterflange fullfils the requirements mentioned in Sec. "4.4 Gear unit foundation - Counterflange for flange mounted gear units"

Mount the gear unit in the following order:

- 1. Lower the gear unit on the counterflange with suitable lifting means. Especially take care of the guidelines mentioned in Sec. 2.1.
- 2. Secure the gear unit at the right position on the counterflange using the flange bolts and tighten them crosswise with the full tightening torque (\rightarrow sec. 4.4).

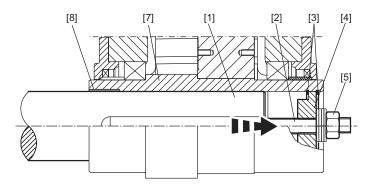
Mounting / removing hollow shaft gear units with keyed connection

4.6 Mounting / removing hollow shaft gear units with keyed connection

- Included in the scope of delivery (→ Figure 23):
 - Circlips [3], end plate [4]
- Not included in the scope of delivery (→ Figure 23 / Figure 24 / Figure 25):
 - Threaded rod [2], nut [5], retaining screw [6], ejector screw [8]

Selecting the adequate thread and length of the threaded rod as well as the retaining screw depends on the design of the customer's machine.

Thread sizes


SEW-EURODRIVE recommends the following thread sizes:

Gear unit size	Thread size for • threaded rod [2] • nut (DIN 934) [5] • retaining screw [6]		
02 - 06	M24		
07 - 09	M30		

The thread size of the ejector screw depends on the end plate [4]:

Gear unit size	Thread size of ejector screw [8]		
02 - 06	M30		
07 - 09	M36		

Mounting the hollow shaft gear unit onto the customer's shaft

56813AXX

Figure 23: Mounting of hollow shaft gear unit with keyed connection

[1] Customer's shaft

[5] Nut

[2] Threaded rod

[7] Hollow shaft

[3] Circlips

[8] Bushing

[4] End plate

• To mount and secure the gear unit, attach the circlips [3] and the end plate [4] on the hollow shaft bore.

Mechanical Installation

Mounting / removing hollow shaft gear units with keyed connection

- Apply NOCO® fluid to the hollow shaft [7] and the shaft end of the customer's shaft [1].
- Push the gear unit onto the customer's shaft [1]. Thread the threaded rod [2] into the customer's shaft [1]. Tighten the customer's shaft [1] with the nut [5] until the shaft end of the customer's shaft [1] and the end plate [4] meet.
- Loosen the nut [5] and unscrew the threaded rod [2]. After having mounted the gear unit, secure the customer's shaft [1] using the retaining screw [6].

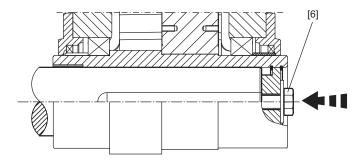
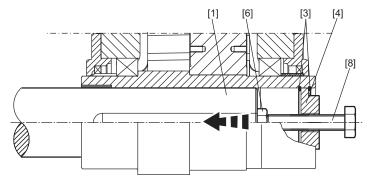



Figure 24: Mounted hollow shaft gear unit with keyed connection

56814AXX

Removing the hollow shaft gear unit from the customer's shaft

56815AXX

Figure 25: Removing hollow shaft gear unit with keyed connection

- [1] Customer's shaft
- [6] Retaining screw

[3] Circlips

[8] Ejector screw

- [4] End plate
- Remove the retaining screw [Figure 24, Pos. 6].
- · Remove the outer circlip [3] and the end plate [4].
- Thread the retaining screw [6] into the customer's shaft [1].
- Flip the end plate [4] and remount the end plate and the outer circlip [3].
- Thread the ejector screw [8] into the end plate [4] to remove the gear unit from the customer's shaft [1].

Mechanical Installation

Mounting / removing hollow shaft gear units with shrink disc

4.7 Mounting / removing hollow shaft gear units with shrink disc

A shrink disc serves as connecting element between the hollow shaft of the gear unit and the customer's shaft. For the shrink disc type used (designation: RLK608), refer to section "Identifying shrink disc type"

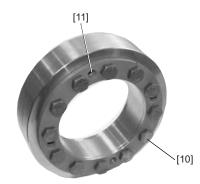
- Included in the scope of delivery (→ Figure 31):
 - Circlip [3], end plate [4]
- **Not** included in the scope of delivery (→ Figure 31 / Figure 32 / Figure 35):
 - Threaded rod [2], nut [5], retaining screw [6], ejector screw [8]

Selecting the appropriate thread and length of the threaded rod as well as the retaining screw depends on the design of the customer's machine.

Thread sizes

SEW-EURODRIVE recommends the following thread sizes:

Gear unit size	Thread size for threaded rod [2] nut (DIN 934) [5] retaining screw [6]		
02 - 06	M24		
07 - 09	M30		


The thread size of the ejector screw depends on the end plate [4]:

Gear unit size	Thread size of the ejector screw [8]		
02 - 06	M30		
07 - 09	M36		

Identifying shrink disc type

Normally, the shrink disc type RLK608 is used. It has a metallic colour shade. The letters "RLK 608-..." are engraved:

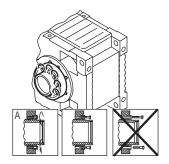
56612AXX

Figure 26: shrink disc type RLK608

[10] Locking screw

[11] Forcing thread

Order-specific, other shrink disc types could be used. In this case please refer to the separate, shrink disc-specific manual.



Mounting the shrink disc

Do not tighten the locking screws [10] before the customer's shaft [1] has been mounted, else the hollow shaft could be deformed!

56817AXX

Figure 27: Shrink disc locking screws before customer's shaft mounting

Slide the shrink disc [9] with untightened screws onto the hub of the hollow shaft bore. Position the customer's shaft [1] in the hollow shaft bore. Next move the shrink disc [9] by dimension A (\rightarrow following figure, Sec. "Dimension A") from the shaft end of the hollow shaft:

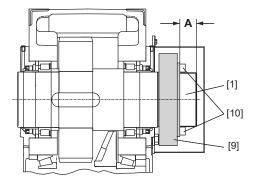


Figure 28: Mounting the shrink disc

[1] Customer's shaft

[10] Locking screws

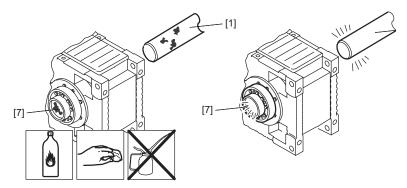
51986AXX

[9] Shrink disc

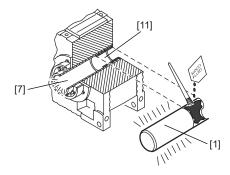
It is essential to make sure that the clamping area of the shrink disc is free from grease.

Dimension A

Gear unit size	Shrink disc type RLK608			
MC	Dimension A [mm]			
02	39			
03	45			
04	44			
05	42			
06	44			
07	50			
08	51			
09	49			



Mounting / removing hollow shaft gear units with shrink disc


Mounting the hollow shaft gear unit onto the customer's shaft • Before mounting the gear unit, degrease the hollow shaft bore and the customer's shaft [1].

56820AXX

Figure 29: Degrease of hollow shaft bore and customer's shaft

Apply a small amount of NOCO[®] fluid on the customer's shaft to the area of the bushing [11].

56811AXX

Figure 30: Application of NOCO® fluid on customer's shaft

Never apply NOCO® fluid directly to the bushing as the paste may be able to get into the clamping area of the shrink disk when the input shaft is put on.

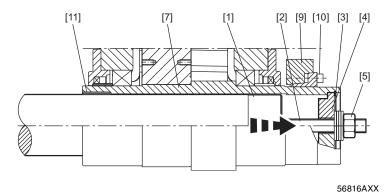
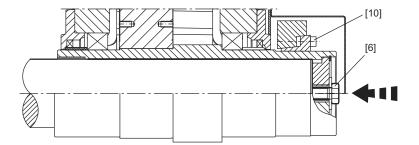


Figure 31: Mounting of hollow shaft gear unit with shrink disc

[1] Customer's shaft[7] Hollow shaft[9] Shrink disc


....

[3] Circlip [10] Locking screws

[4] End plate [11] Bushing

[5] Nut

- To mount and secure the gear unit, attach the circlips [3] and the end plate [4] on the hollow shaft bore.
- Push the gear unit onto the customer's shaft [1]. Thread the threaded rod [2] into the customer's shaft [1]. Tighten the customer's shaft [1] with the nut [5] until the shaft end of the customer's shaft [1] and the end plate [4] meet.
- Loosen the nut [5] and unscrew the threaded rod [2]. After having mounted the gear unit, secure the customer's shaft [1] using the retaining screw [6].

56817AXX

Figure 32: Mounted hollow shaft gear unit with shrink disc, shrink disc unclamped

Mounting / removing hollow shaft gear units with shrink disc

Tightening shrink disc type RLK608

Tighten the locking screws by hand whilst aligning the shrink disc. Tighten the clamping screws one by one in a clockwise direction (not crosswise) by only 1/4 revolution each.

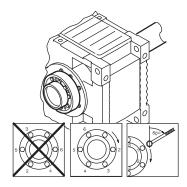


Figure 33: Order of locking screws thightening

56812AXX

The screws of shrink discs with slitted cone bushing has to be tightened in that way that you start with the screw on one side of the slit and continue with the screw on the other side of the slit.

Continue thighten the screws by 1/4 revolution in several stages until the screw- side faces of the outer ring and the inner ring are in line like shown in Figure 34.

The assembly is defined by the axial movement of the cone bushing and can be done without a torque wrench.

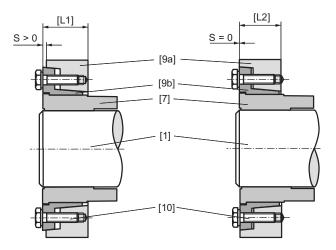


Figure 34: Tightening shrink disc type RLK608

56886AXX

 $[L1] \ State \ at \ time \ of \ delivery \ (pre \ assembled)$

[L2] Ready for operation (final assembly)

[9a] Cone

[9b] Cone bushing

[7] Hollow shaft

[1] Customer's shaft

[10] Locking screws

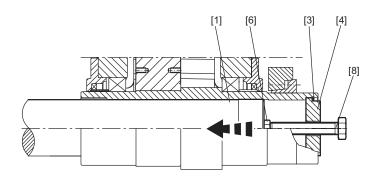
POF-XChange Republished Republ

Mechanical Installation

Mounting / removing hollow shaft gear units with shrink disc

Removing the shrink disc

Loosen the locking screws [10] by 1/4 revolution each in sequence in several levels evenly, so that tilting of the clamping surface is avoided.


Never unscrew the locking screws completely from the tapped hole, since otherwise danger of accident exists.

If the cone bushing and cone ring do not loosen from each other by themselves:

Take the required quantity of locking screws and bolt them evenly into the removing thread bores. Tighten the locking screws in several levels until the cone bushing is separated from the cone ring.

Take the shrink disc off from the hollow shaft.

Removing the hollow shaft gear unit from the customer's shaft

56818AXX

Figure 35: Removing the hollow shaft gear unit with shrink disc connection

- [1] Customer's shaft
- [6] Retaining screw

[3] Circlip

[8] Ejector screw

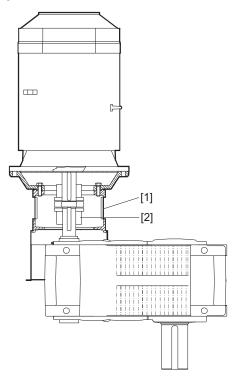
- [4] End plate
- Remove the retaining screw [Figure 32, Pos. 6].
- Remove the outer circlip [3] and the end plate [4].
- Thread the retaining screw [6] into the customer's shaft [1].
- Flip the end plate [4] and remount the end plate and the outer circlip [3].
- Thread the ejector screw [8] into the end plate [4] to remove the gear unit from the customer's shaft [1].

Cleaning and lubrication

Clean the shrink disk after the disassembly and

- grease afterwards the locking srews [10] on the thread and under the head with paste which consist MoS₂, e.g. "gleitmo 100" from FUCHS LUBRITECH (www.fuchs.-lubritech.de).
- Coat the conical surfaces and the screw-side face of the cone bushing with a thin film (0.01 ... 0.02 mm) with the solid film lubricant "gleitmo 900" from FUCHS LUBRITECH (www.fuchs.-lubritech.de) or with an equal product from other supplier.

Spray the solid film lubricant on the surface till the color of the solid film lubricant is just thick enough to cover the surface (in this case the thickness will be about 0.01 ... 0.02 mm)


Mechanical Installation Mounting a motor with motor adapter

4.8 Mounting a motor with motor adapter

Motor adapters [1] are available for mounting IEC motors of sizes 132 to 315 to industrial gear units of the MC series.

51594AXX Figure 36: Motor adapter for MC.P.. industrial gear units

- [1] Motor adapter
- [2] Coupling

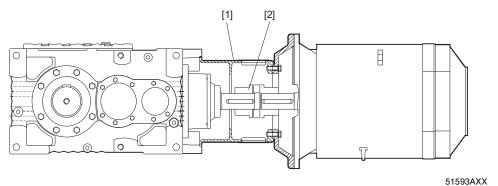


Figure 37: Motor adapter for MC.R.. industrial gear units

- [1] Motor adapter
- [2] Coupling

For mounting couplings [2], refer to the notes in Sec. "Mounting of couplings."

Mechanical InstallationMounting a motor with motor adapter

When selecting a motor, take into account the permitted motor weight, the gear unit design and the type of gear unit mounting according to the following tables.

The following applies to all tables:

G_M = Motor weight

G_G = Gear unit weight

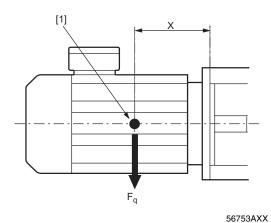
	Series / industrial gear unit design					
Mounting type	MC.PL MC.RL					
Foot-mounted	$G_{M} \leq G_{G}$	$G_{M} \leq G_{G}$				
Shaft-mounted	$G_{M} \le 0.5G_{G}$	$G_{M} \leq G_{G}$				
Flange-mounted	$G_{M} \le 0.5G_{G}$	$G_{M} \leq G_{G}$				

	Series / industrial gear unit design				
Mounting type	MC.PV	MC.RV			
Foot-mounted	G _M ≤ 1.5G _G	$G_{M} \leq G_{G}$			
Shaft-mounted	$G_{M} \leq G_{G}$	$G_{M} \le G_{G}$			
Flange-mounted	$G_{M} \leq G_{G}$	G _M ≤ 0.75G _G			

	Series / industrial gear unit design				
Mounting type	MC.PE	MC.RE			
Foot-mounted	$G_{M} \leq G_{G}$	$G_{M} \le 1.5G_{G}$			
Shaft-mounted	$G_{M} \leq G_{G}$	$G_{M} \leq G_{G}$			
Flange-mounted	$G_{M} \leq G_{G}$	$G_{M} \leq G_{G}$			

These tables are only valid for stationary operation. If gear unit is moving during (e.g. travel drives) please contact SEW-EURODRIVE.

Mechanical Installation


Mounting a motor with motor adapter

These tables only apply to the following correlation of motor size/weight Fq and dimension "x".

[1] Center of gravity of the motor

Motor size		Fq	х	
IEC	NEMA	[N]	[mm]	
132S	213/215	579	189	
132M	213/215	677	208	
160M	254/286	1059	235	
160L	254/286	1275	281	
180M	254/286	1619	305	
180L	254/286	1766	305	
200L	324	2354	333	
225S	365	2943	348	
225M	365	3237	348	
250M	405	4267	395	
280S	444	5984	433	
280M	445	6475	433	
315S	505	8142	485	
315M	505	8927	485	
315L		11772	555	

The maximum approved weight of the attached motor F_q has to be reduced in a linear manner if the center of gravity distance x is increased. $F_{q\ max}$ cannot be increased if the center of gravity distance is reduced.

Contact SEW-EURODRIVE in the following cases:

- When retrofitting motor adapters with a cooling air fan (not for motors of sizes 132S and 132M).
- If motor adapter is removed, re-alignment is necessary.

5.1 Important installation instructions

Disconnect the motor from the power supply before starting work and secure it against unintentional restart!

Important installation notes

- Only use a mounting device for installing input and output elements. Use the center bore and the thread on the shaft end for positioning purposes.
- Never mount couplings, pinions, etc. onto the shaft end by hitting them with a hammer (damage to bearings, housing and the shaft!).
- Observe correct tension of the belt for belt pulleys (in accordance with manufacturer's specifications).
- Power transmission elements should be balanced after insertion and must not give rise to any impermissible radial or axial forces.

Note:

Installation is easier if you first apply lubricant to the output element or heat it up briefly (to 80-100°C).

Adjust the following misalignments when mounting couplings:

- a) Axial misalignment (maximum and minimum clearance)
- b) Offset misalignment (concentric running fault)
- c) Angular misalignment

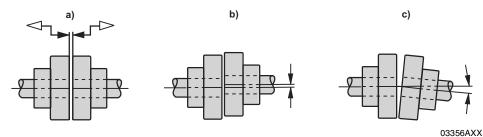
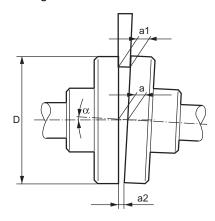


Figure 38: Clearance and misalignment when mounting the coupling

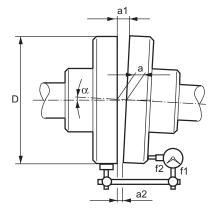
Input and output elements such as couplings must be equipped with a protection cover!

Important installation instructions



Note:

The following methods for measuring angular and axial misalignment are important for complying with the mounting tolerances specified in Sec. "Mounting of couplings"!


Measuring of angular misalignment with a feeler gauge The following figure shows the measurement for angular misalignment (α) using a feeler gauge. When using this method, an accurate result is only achieved when the deviation of the coupling faces is eliminated by turning both coupling halves by 180° and the average value is then calculated from the difference (a_1 – a_2).

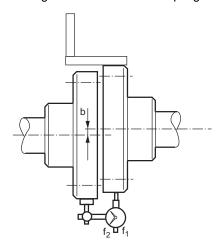
52063AXX

Figure 39: Measuring angular misalignment using a feeler gauge

Measuring of angular misalignment using a micrometer dial The following figure shows the measurement for angular misalignment using a micrometer dial. This measuring method provides the same result as described under "Measuring angular offset with a feeler gauge" if the **coupling halves are rotated together**, for instance with one coupling pin, so that the needle of the micrometer dial does not move noticeably on the measuring surface.

52064AXX

Figure 40: Measuring angular misalignment using a micrometer dial


A prerequisite for this measuring method is that there is no axial play in the shaft bearings when the shafts rotate. If this condition is not fulfilled, the axial play between the faces of the coupling halves must be eliminated. As an alternative, you can use two micrometer dials positioned on the opposite sides of the coupling (to calculate the difference of the two micrometer dials when rotating the coupling).

Measuring of offset misalignment using straight-edge and micrometer dial The following figure shows the measurement for offset misalignment using a straightedge. Permissible values for eccentricity are usually so small that the best measurement results can be achieved with a micrometer dial. If you **rotate one coupling half** together with the micrometer dial and divide the deviation by two, the micrometer dial will indicate the deviation and as a result the misalignment (dimension "b"), which includes the offset misalignment of the other coupling half.

52065AXX

Figure 41: Measuring offset misalignment using straight-edge and micrometer dial

Measuring of offset misalignment using a micrometer dial The following figure shows the measurement for offset misalignment using a **more accurate measuring method**. The **coupling halves** are **rotated together** without the tip of the micrometer dial moving on the measuring surface. The offset misalignment is obtained by dividing the deviation indicated on the micrometer dial (dimension "b").

52066AXX

Figure 42: Measuring offset misalignment using a micrometer dial

5.2 Mounting of couplings

ROTEX coupling

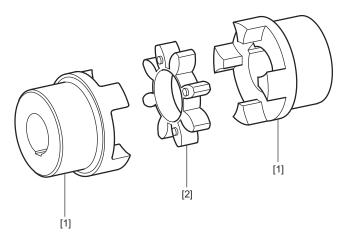
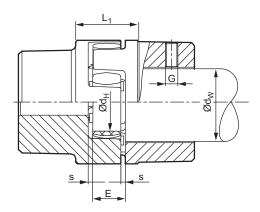


Figure 43: Design of the ROTEX coupling

51663AXX

- [1] Coupling hub
- [2] Ring gear


The low-maintenance, elastic ROTEX coupling is capable of compensating radial and angular misalignment. Careful and exact alignment of the shaft ensures long service life of the coupling.

Mounting the coupling halves onto the shaft

51689AXX

Figure 44: Mounting dimensions of the ROTEX coupling

	Mounting dimensions			Locking screw				
Coupling size	E [mm]	s [mm]	d _H [mm]	d _W [mm]	L ₁ (Alu / GG / GGG) [mm]	L ₁ (steel) [mm]	G	Tightening torque [Nm]
14	13	1.5	10	7	-	-	M4	2.4
19	16	2	18	12	26	-	M5	4.8
24	18	2	27	20	30	-	M5	4.8
28	20	2.5	30	22	34	-	M6	8.3
38	24	3	38	28	40	60	M8	20
42	26	3	46	36	46	70	M8	20
48	28	3.5	51	40	50	76	M8	20
55	30	4	60	48	56	86	M10	40
65	35	4.5	68	55	63	91	M10	40
75	40	5	80	65	72	104	M10	40
90	45	5.5	100	80	83	121	M12	69
100	50	6	113	95	92	-	M12	69
110	55	6.5	127	100	103	-	M16	195
125	60	7	147	120	116	-	M16	195
140	65	7.5	165	135	127	-	M20	201
160	75	9	190	160	145	-	M20	201
180	85	10.5	220	185	163	-	M20	201

The shaft distance must be strictly observed (dimension E) to ensure axial play of the coupling.

Mounting dimensions ROTEX coupling in motor adapter Tighten the set screws (A) to avoid axial play of the coupling.

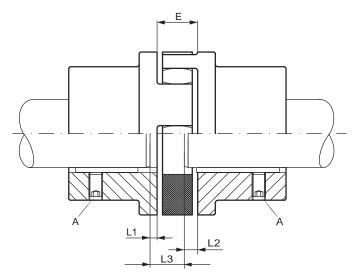


Figure 45: Mounting dimensions of the ROTEX coupling at the HSS (input shaft) – motor adapter

The mounting dimensions specified in the following table only apply to mounting a ROTEX coupling in a motor adapter. They apply to all gear unit versions and gear ratios.

ROTEX coupling size	IEC motor size	Mounting dimensions					
		E [mm]	L ₁ [mm]	L ₂ [mm]	L ₃ [mm]		
R28/38	132	20	0	-17	3		
R38/45	160	24	1	0	25		
R42/55	180/200	26	-1	0	25		
R48/60	225	28	0	-3	25		
R55/70	225	30	0	– 5	25		
R65/75	250/280	35	0	-10	25		
R75/90	315	40	0	-15	25		
R90/100	315	45	-20	0	25		

The shaft distance must be strictly observed (dimension E) to ensure axial play of the coupling.

Mounting of couplings

Nor-Mex coupling, types G and E

The low-maintenance Nor-Mex couplings types G and E are torsionally flexible couplings capable of compensating axial, angular, and radial shaft misalignments. Torque is transmitted via an elastic element with high damping properties, which is also oil and heat resistant. The couplings can be used for either direction of rotation and can be mounted in any position. The design of the Nor-Mex coupling type G allows to replace the elastic element [5] without movement of the shafts.

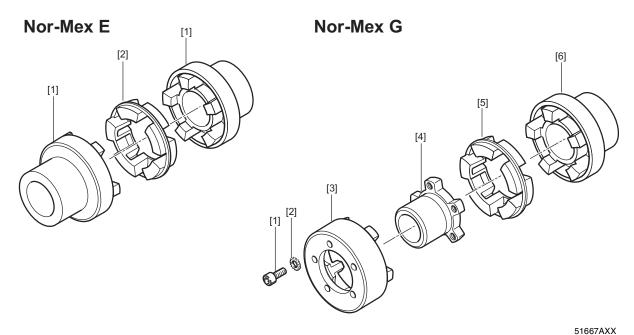
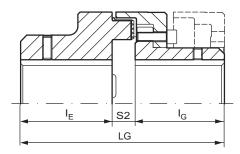


Figure 46: Design of the Nor-Mex E / Nor-Mex G coupling

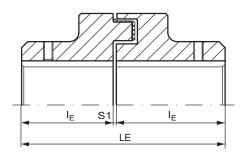
- [1] Coupling hub
- [2] Elastic element


- [1] Socket head screw
- [2] Washer
- [3] Claw ring
- [4] Flange hub
- [5] Elastic element
- [6] Coupling hub

Mounting instructions, mounting dimensions for Nor-Mex G couplings After having mounted the coupling halves, ensure that the recommended play (dimension S_2 for type G, dimension S_1 for type E) and the overall length (dimension L_G for type G and dimension L_E for type E) corresponds with the dimensions given in the following tables. Accurate alignment of the coupling (\rightarrow Sec. 'Mounting tolerances') ensures long service life.

51674AXX

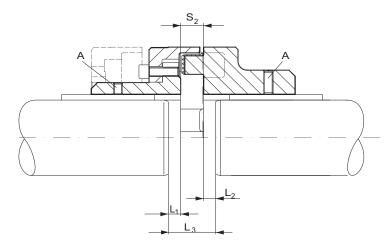
Figure 47: Mounting dimensions of the Nor-Mex G coupling


Non Mari					
Nor-Mex G Coupling size	l _E l _G [mm]		L _G [mm]	Permitted tolerance S ₂ [mm]	Weight [kg]
82	40	40	92	12±1	1.85
97	50	49	113	14±1	3.8
112	60	58	133	15±1	5
128	70	68	154	16±1	7.9
148	80	78	176	18±1	12.3
168	90	87	198	21±1.5	18.3
194	100	97	221	24±1.5	26.7
214	110	107	243	26±2	35.5
240	120	117	267	30±2	45.6
265	140	137	310	33±2.5	65.7
295	150	147	334	37±2.5	83.9
330	160	156	356	40±2.5	125.5
370	180	176	399	43±2.5	177.2
415	200	196	441	45±2.5	249.2
480	220	220	485	45±2.5	352.9
575	240	240	525	45±2.5	517.2

Mounting dimensions of the Nor-Mex E coupling

51674AXX

Figure 48: Mounting dimensions of the Nor-Mex E coupling


Nor-Mex E	Mounting dimensions							
Coupling size	l _E [mm]	LE [mm]	Permitted tolerance S ₁ [mm]	Weight [kg]				
67	30	62.5	2.5± 0.5	0.93				
82	40	83	3± 1	1.76				
97	50	103	3± 1	3.46				
112	60	123.5	3.5± 1	5				
128	70	143.5	3.5± 1	7.9				
148	80	163.5	3.5± 1.5	12.3				
168	90	183.5	3.5± 1.5	18.4				
194	100	203.5	3.5± 1.5	26.3				
214	110	224	4± 2	35.7				
240	120	244	4± 2	46.7				
265	140	285.5	5.5± 2.5	66.3				
295	150	308	8± 2.5	84.8				
330	160	328	8± 2.5	121.3				
370	180	368	8± 2.5	169.5				
415	200	408	8± 2.5	237				
480	220	448	8± 2.5	320				
575	240	488	8± 2.5	457				

Mounting dimensions of the Nor-Mex coupling type G in the motor adapter Tighten the set screws (A) to avoid axial play of the coupling.

51672AXX Figure 49: Mounting dimensions of the Nor-Mex coupling on the HSS (input shaft) – motor adapter

The mounting tolerances specified in the following table only apply to mounting a Nor-Mex coupling in a motor adapter.

NOR-MEX coupling size G		97	97	112	128	148	168	194	214
	IEC motor size	132	160	160/180	200	225	250/280	280/315	315
Gear unit size Gear ratio i	Mounting dimension	[mm]							
All	S ₂	14	14	15	16	18	21	24	26
All	L ₃	3	25	25	25	25	25	25	25
MC3R02 i = 14 63	L ₂	-	5	5	5	10	2	1	0
	L ₁	-	6	5	4	-3	2	0	-1
MC3R05	L ₂	-	5	5	5	4	2	5	0
i = 14 63	L ₁	-	6	5	4	3	2	-4	-1
MC3R08 i = 14 63	L ₂	-	5	5	5	4	2	1	5
	L ₁	-	6	5	4	3	2	1	-6
Other MC i = 7.1 112	L ₂	-5	5	5	5	4	2	1	0
	L ₁	-6	6	5	4	3	2	0	-1



Mounting of couplings

Flexible jaw couplings MT, MS-MTN series

Mounting

- 1. Ensure that all parts are clean.
- 2. Apply a light coat of grease to the O-rings [6] and place them into the grooves of the sleeves [2,3 or 4,5].
- 3. Apply grease onto the sleeve teeth [2,3 or 4,5]. Place the sleeves onto the shafts without damaging the O-rings [6].

